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Probabilistic Models

● General class of models that output a probability distribution, e.g., 
through the softmax over the final layer of a neural network.

● Used for many NLP tasks: machine translation, abstractive 
summarization, natural language inference, etc. 3*https://rohanvarma.me/Neural-Net/

*

https://rohanvarma.me/Neural-Net/


Regularization

What: Large neural networks need regularization during training to avoid 
overfitting!

Common forms of regularization:

● Dropout
● L2 weight normalization
● Label smoothing
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Regularization

Signs of overfitting: “peaky” (i.e. overconfident) output distributions
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Signs of overfitting: “peaky” (i.e. overconfident) output distributions
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Low entropy 
distribution!!



Entropy Regularization

Label Smoothing (Szegedy et. al. 2016):
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Entropy Regularization

Label Smoothing (Szegedy et. al. 2016):

● Add-𝜸 smoothing technique to ground truth (one-hot) labels. Cross 
entropy loss performed over augmented labels

● Interpretation as entropy regularization:
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Label smoothing has become a 
default regularization method for 
many probabilistic modelling tasks!



Entropy Regularization

Label Smoothing (Szegedy et. al. 2016):

● Add-𝜸 smoothing technique to ground truth (one-hot) labels. Cross 
entropy loss performed over augmented labels

● Interpretation as entropy regularization:

Confidence Penalty (Pereira et. al. 2017):
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Entropy Regularization

Label Smoothing (Szegedy et. al. 2016):

● Add-𝜸 smoothing technique to ground truth (one-hot) labels. Cross 
entropy loss performed over augmented labels

● Interpretation as entropy regularization:

Confidence Penalty (Pereira et. al. 2017):

● Add penalty to loss function for overconfident distributions 
● Interpretation as entropy regularization:
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Entropy Regularization
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Question: Are label smoothing and the confidence penalty the 
only forms of entropy regularization? 



Entropy Regularization
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Question: Are label smoothing and the confidence penalty the 
only forms of entropy regularization? 

Answer: No! Otherwise, this would be a very boring paper.



Generalized Entropy 
Regularization
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Framework for Entropy Regularization
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Introducing: Generalized Entropy Regularization
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Introducing: Generalized Entropy Regularization
Explanation: 
in words

●        is a divergence measure between two distributions, e.g.,    
and      . 

● Since     is the uniform (most entropic) distribution, adding a 
penalty for the divergence between     and       pushes      
towards a higher entropy solution



Framework for Entropy Regularization
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Introducing: Generalized Entropy Regularization
Explanation: 
in math
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Introducing: Generalized Entropy Regularization

Fancy way of saying 
“over the training corpus”

Explanation: 
in math



Framework for Entropy Regularization
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Introducing: Generalized Entropy Regularization

Jensen-𝜶 
divergence for 
generator 
function G

Explanation: 
in math



Framework for Entropy Regularization
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For generator function    (negative Shannon 
entropy) and   :
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For generator function    (negative Shannon 
entropy) and       :

Equivalent to ?????



Framework for Entropy Regularization
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Question: Why do we need more forms of entropy regularization?
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Question: Why do we need more forms of entropy regularization?

● Label smoothing and the confidence penalty only cover 2 
specific instances. 
○ Label smoothing = minimize inclusive KL divergence between     and 

○ Confidence penalty = minimize exclusive KL divergence between     and 

● There are a large number of other divergences we may 
choose to minimize.

● Specific divergence measures are more appropriate for 
certain tasks*

* See Minka’s “Divergence Measures and Message Passing” for in-depth discussion



Framework for Entropy Regularization
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Framework for Entropy Regularization
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Label smoothing diverges for 
sparse solutions!



Experimental 
Findings
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Experimental Findings
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BLEU scores and normalized entropy of       on test sets for WMT'14 De-En, 
WMT'14 De-En, and MTTT Fr-En. Results include baseline models with no 
(entropy) regularization and standard label smoothing with 𝛾=1.
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BLEU scores and normalized entropy of       on test sets for WMT'14 De-En, 
WMT'14 De-En, and MTTT Fr-En. Results include baseline models with no 
(entropy) regularization and standard label smoothing with 𝛾=1.

Empirically, we can do much better 
than standard label smoothing!
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Experimental Findings
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Percentage of words with < ε 
probability mass at different values of 
ε. All models used in the calculation 
have entropy within the same 1%.



Summary + Conclusion
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● Large probabilistic models need regularizers; various forms of 
entropy regularization have proven their merit in practice

● Many classes of entropy regularizers fit into our generalized entropy 
regularization framework. 

● For the language generation tasks we consider, all regularizers can 
lead to good performance, suggesting we may generally desire a 
higher entropy solution     .

● Some of these regularizers may be better suited for certain tasks 
due to the nature of the underlying divergence measure.
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