# Generalized Entropy Regularization: Or There's Nothing Special about Label Smoothing

Clara Meister, Elizabeth Salesky, and Ryan Cotterell

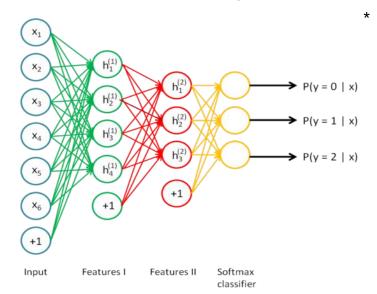




Organization:

- Regularizers for Probabilistic Models
- Interpretation as Entropy Regularizers
- A Single Framework
- Experimental Findings

• General class of models that output a probability distribution, e.g., through the softmax over the final layer of a neural network.



 Used for many NLP tasks: machine translation, abstractive summarization, natural language inference, etc. What: Large neural networks need regularization during training to avoid overfitting!

Common forms of regularization:

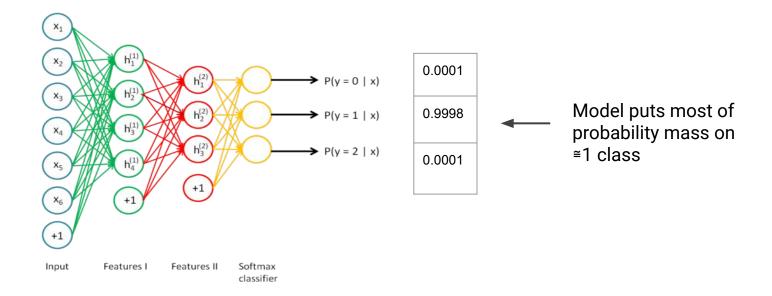
- Dropout
- L2 weight normalization
- Label smoothing

What: Large neural networks need regularization during training to avoid overfitting!

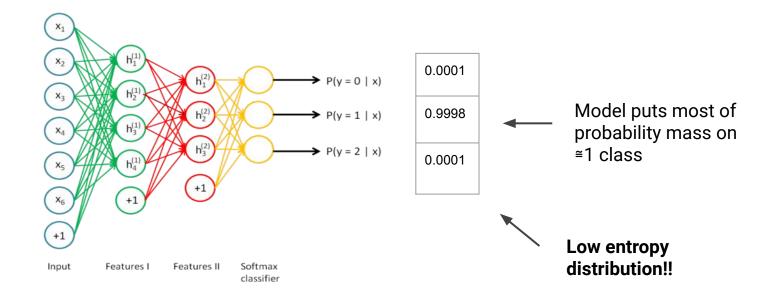
Common forms of regularization:

- Dropout
- L2 weight normalization
- Label smoothing

Signs of overfitting: "peaky" (i.e. overconfident) output distributions

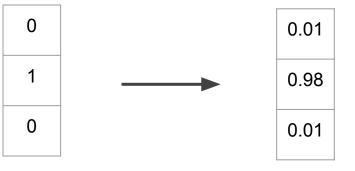


Signs of overfitting: "peaky" (i.e. overconfident) output distributions



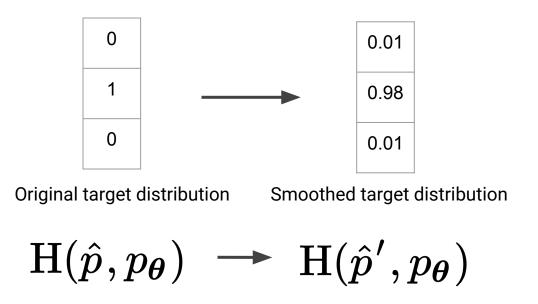
## **Entropy Regularization**

Label Smoothing (Szegedy et. al. 2016):



Original target distribution Smoothed target distribution

## **Entropy Regularization**



- Add- $\gamma$  smoothing technique to ground truth (one-hot) labels. Cross entropy loss performed over augmented labels
- Interpretation as entropy regularization:

$$\mathcal{L}(\boldsymbol{ heta})_{\mathrm{LS}} = (1-\gamma)\mathcal{L}(\boldsymbol{ heta}) + \gamma \mathrm{H}(u, p_{\boldsymbol{ heta}})$$

- Add- $\gamma$  smoothing technique to ground truth (one-hot) labels. Cross entropy loss performed over augmented labels
- Interpretation as entropy regularization:

Label smoothing has become a – default regularization method for many probabilistic modelling tasks!

- Add- $\gamma$  smoothing technique to ground truth (one-hot) labels. Cross entropy loss performed over augmented labels
- Interpretation as entropy regularization:

$$\mathcal{L}(\boldsymbol{ heta})_{\mathrm{LS}} = (1 - \gamma)\mathcal{L}(\boldsymbol{ heta}) + \gamma \mathrm{H}(u, p_{\boldsymbol{ heta}})$$
  
Standard Uniform distribution Vibration With parameters  $\boldsymbol{ heta}$   
 $\mathrm{H}(\hat{p}, p_{\boldsymbol{ heta}})$ 

Label Smoothing (Szegedy et. al. 2016):

- Add- $\gamma$  smoothing technique to ground truth (one-hot) labels. Cross entropy loss performed over augmented labels
- Interpretation as entropy regularization:

$$\mathcal{L}(\boldsymbol{\theta})_{\mathrm{LS}} = (1 - \gamma)\mathcal{L}(\boldsymbol{\theta}) + \gamma \mathrm{H}(u, p_{\boldsymbol{\theta}})$$

Confidence Penalty (Pereira et. al. 2017):

Label Smoothing (Szegedy et. al. 2016):

- Add- $\gamma$  smoothing technique to ground truth (one-hot) labels. Cross entropy loss performed over augmented labels
- Interpretation as entropy regularization:

$$\mathcal{L}(oldsymbol{ heta})_{ ext{LS}} = (1-\gamma)\mathcal{L}(oldsymbol{ heta}) + \gamma ext{H}(u, p_{oldsymbol{ heta}})$$

Confidence Penalty (Pereira et. al. 2017):

- Add penalty to loss function for overconfident distributions  $p_{\theta}$
- Interpretation as entropy regularization:

$$\mathcal{L}(\boldsymbol{\theta})_{\mathrm{CP}} = \mathcal{L}(\boldsymbol{\theta}) - \beta \mathrm{H}(p_{\boldsymbol{\theta}})$$

Question: Are label smoothing and the confidence penalty the only forms of entropy regularization?

Question: Are label smoothing and the confidence penalty the only forms of entropy regularization?

Answer: No! Otherwise, this would be a very boring paper.

# Generalized Entropy Regularization

#### Introducing: Generalized Entropy Regularization

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

**Explanation: in words** Introducing: **General** 

Introducing: Generalized Entropy Regularization

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

# Explanation:in wordsIntroducing: Generalized Entropy Regularization

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

•  $J_{\alpha}$  is a divergence measure between two distributions, e.g., u and  $p_{\theta}$ .

## **Explanation:**

in words

Introducing: Generalized Entropy Regularization

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

- $J_{\alpha}$  is a divergence measure between two distributions, e.g., u and  $p_{\theta}$ .
- Since u is the uniform (most entropic) distribution, adding a penalty for the divergence between u and  $p_{\theta}$  pushes  $p_{\theta}$  towards a higher entropy solution

Explanation:in mathIntroducing: Generalized Entropy Regularization

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

Explanation:in mathIntroducing: Generalized Entropy Regularization

$$egin{aligned} \mathcal{L}(oldsymbol{ heta})_{ ext{GER}} &= \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}}) \ D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}}) &= \sum_{x,y \in \mathcal{C}} J_lpha(u(\cdot) \mid\mid p_{oldsymbol{ heta}}(\cdot \mid x)) \end{aligned}$$



Fancy way of saying "over the training corpus"

Explanation:in mathIntroducing: Generalized Entropy Regularization

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_{lpha}}(u \mid\mid p_{oldsymbol{ heta}})$$
  
 $D_{J_{lpha}}(u \mid\mid p_{oldsymbol{ heta}}) = \sum_{x,y \in \mathcal{C}} J_{lpha}(u(\cdot) \mid\mid p_{oldsymbol{ heta}}(\cdot \mid x))$   
 $J_{lpha}(u \mid\mid p_{oldsymbol{ heta}}) \coloneqq \frac{1}{lpha(1-lpha)} \Big((1-lpha)G(u) + AG(p_{oldsymbol{ heta}}) - G((1-lpha)u + lpha p_{oldsymbol{ heta}})\Big)$ 

25

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

For generator function G(z) = -H(z) (negative Shannon entropy) and  $\alpha \rightarrow 1$ :

$$egin{aligned} &J_lpha(u \mid\mid p_{oldsymbol{ heta}}) = \mathrm{KL}(u \mid\mid p_{oldsymbol{ heta}}) \ &= \mathrm{H}(u, p_{oldsymbol{ heta}}) + C \end{aligned}$$

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

For generator function G(z) = -H(z) (negative Shannon entropy) and  $\alpha \rightarrow 1$ :

$$egin{aligned} &J_lpha(u \mid\mid p_{oldsymbol{ heta}}) = \mathrm{KL}(u \mid\mid p_{oldsymbol{ heta}}) \ &= \mathrm{H}(u, p_{oldsymbol{ heta}}) + C \end{aligned}$$

# **Equivalent to label smoothing!**

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

For generator function G(z) = -H(z) (negative Shannon entropy) and  $\alpha \to 0$ :

$$egin{aligned} &J_lpha(u \mid\mid p_{oldsymbol{ heta}}) = ext{KL}(p_{oldsymbol{ heta}} \mid\mid u) \ &= - ext{H}(p_{oldsymbol{ heta}}) + C \end{aligned}$$

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

For generator function G(z) = -H(z) (negative Shannon entropy) and  $\alpha \to 0$ :

$$egin{aligned} &J_lpha(u \mid\mid p_{oldsymbol{ heta}}) = ext{KL}(p_{oldsymbol{ heta}} \mid\mid u) \ &= - ext{H}(p_{oldsymbol{ heta}}) + C \end{aligned}$$

# Equivalent to the confidence penalty!

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

For generator function 
$$G(z) = -H(z)$$
 (negative Shannon  
entropy) and  $\alpha \in (0,1)$  :  
 $J_{\alpha}(u \mid\mid p_{\theta}) = \frac{1-\alpha}{\alpha(1-\alpha)} \operatorname{KL}(u \mid\mid (1-\alpha)u + \alpha p_{\theta}) + \frac{\alpha}{\alpha(1-\alpha)} \operatorname{KL}(p_{\theta} \mid\mid (1-\alpha)u + \alpha p_{\theta})$ 

$$\mathcal{L}(oldsymbol{ heta})_{ ext{GER}} = \mathcal{L}(oldsymbol{ heta}) + eta D_{J_lpha}(u \mid\mid p_{oldsymbol{ heta}})$$

.

For generator function 
$$G(z) = -H(z)$$
 (negative Shannon  
entropy) and  $\alpha \in (0,1)$ :  
$$J_{\alpha}(u \mid\mid p_{\theta}) = \frac{1-\alpha}{\alpha(1-\alpha)} \mathrm{KL}(u \mid\mid (1-\alpha)u + \alpha p_{\theta}) + \frac{\alpha}{\alpha(1-\alpha)} \mathrm{KL}(p_{\theta} \mid\mid (1-\alpha)u + \alpha p_{\theta})$$
$$\frac{\alpha}{\mathrm{Equivalent to ?????}}$$

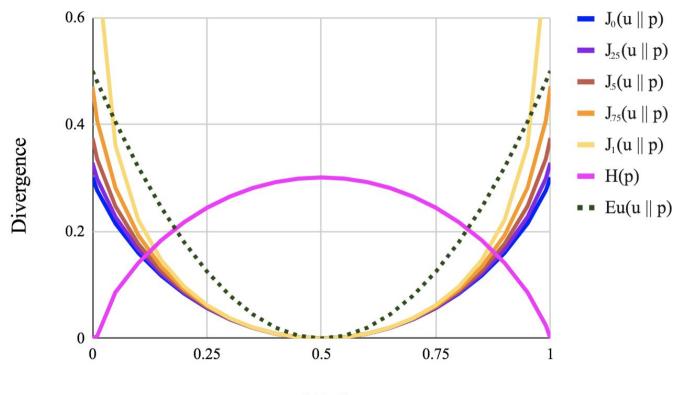
• Label smoothing and the confidence penalty only cover 2 specific instances.

- Label smoothing and the confidence penalty only cover 2 specific instances.
  - Label smoothing = minimize *inclusive* KL divergence between u and  $p_{\theta}$
  - Confidence penalty = minimize **exclusive** KL divergence between u and  $p_{\theta}$

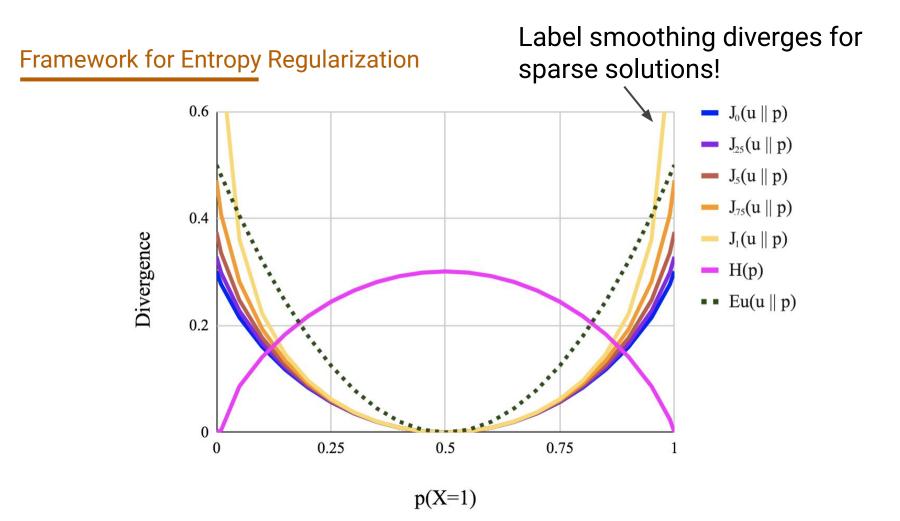
- Label smoothing and the confidence penalty only cover 2 specific instances.
  - Label smoothing = minimize *inclusive* KL divergence between u and  $p_{\theta}$
  - Confidence penalty = minimize **exclusive** KL divergence between u and  $p_{\theta}$
- There are a large number of other divergences we may choose to minimize.

- Label smoothing and the confidence penalty only cover 2 specific instances.
  - Label smoothing = minimize *inclusive* KL divergence between u and  $p_{\theta}$
  - Confidence penalty = minimize **exclusive** KL divergence between u and  $p_{\theta}$
- There are a large number of other divergences we may choose to minimize.
- Specific divergence measures are more appropriate for certain tasks

- Label smoothing and the confidence penalty only cover 2 specific instances.
  - Label smoothing = minimize *inclusive* KL divergence between u and  $p_{\theta}$
  - Confidence penalty = minimize **exclusive** KL divergence between u and  $p_{\theta}$
- There are a large number of other divergences we may choose to minimize.
- Specific divergence measures are more appropriate for certain tasks<sup>\*</sup>
  - \* See Minka's "Divergence Measures and Message Passing" for in-depth discussion



p(X=1)



# Experimental Findings

## **Experimental Findings**

|                                            | WMT'14 De-En |      |      | IWSLT'14 De-En   |          |      |      | MTTT Fr-En       |          |         |      |                  |
|--------------------------------------------|--------------|------|------|------------------|----------|------|------|------------------|----------|---------|------|------------------|
|                                            | $\alpha$     | eta  | Ĥ    | BLEU             | $\alpha$ | eta  | Ĥ    | BLEU             | $\alpha$ | $\beta$ | Ĥ    | BLEU             |
| No Regularization                          | -            | 0    | 0.11 | 31.1             | -        | 0    | 0.1  | 35.7             |          | 0       | 0.15 | 35.2             |
| Label Smoothing $D_{J_1}$ ( $\gamma=0.1$ ) | 1            | 0.11 | 0.23 | 31.3 <b>+0.2</b> | 1        | 0.11 | 0.18 | 36.9 <b>+1.2</b> | 1        | 0.11    | 0.18 | 36.5 <b>+0.8</b> |
| Label Smoothing $D_{J_1}$                  | 1            | 0.35 | 0.38 | 31.7 <b>+0.6</b> | 1        | 0.50 | 0.40 | 37.2 +1.5        | 1        | 0.693   | 0.47 | 37.5 +2.3        |
| Confidence Penalty $D_{J_0}$               | 0            | 0.28 | 0.55 | 31.6 +0.5        | 0        | 0.76 | 0.81 | 37.5 <b>+1.8</b> | 0        | 0.95    | 0.86 | 37.4 +2.2        |
| GER $D_{\mathrm{J}_{\alpha}}$              | 0.7          | 0.65 | 0.47 | 32.0 <b>+0.9</b> | 0.5      | 1.00 | 0.56 | 37.5 <b>+1.8</b> | 0.85     | 0.52    | 0.37 | 37.6 <b>+2.4</b> |

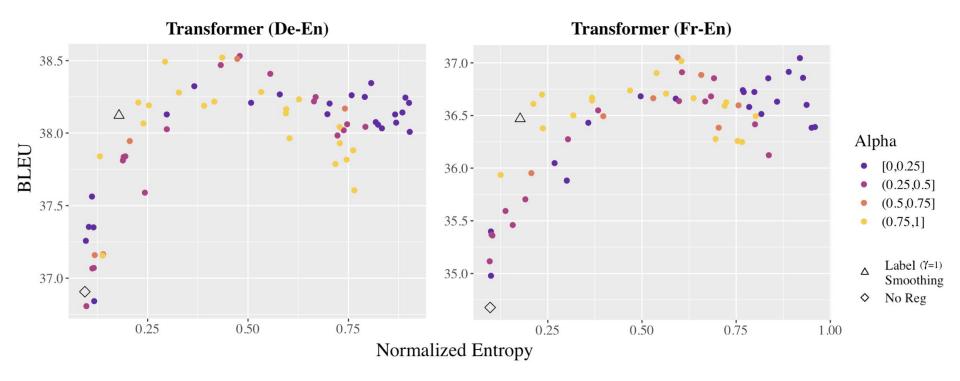
BLEU scores and normalized entropy of  $p_{\theta}$  on test sets for WMT'14 De-En, WMT'14 De-En, and MTTT Fr-En. Results include baseline models with no (entropy) regularization and standard label smoothing with  $\gamma$ =1.

# Empirically, we can do much better than standard label smoothing!

|                                            | WMT'14 De-En |         |      |                  | IWSLT'14 De-En |      |      |                  | MTTT Fr-En |       |      |                  |
|--------------------------------------------|--------------|---------|------|------------------|----------------|------|------|------------------|------------|-------|------|------------------|
|                                            | $\alpha$     | $\beta$ | Ĥ    | BLEU             | $\alpha$       | eta  | Ĥ    | BLEU             | $\alpha$   | eta   | Ĥ    | BLEU             |
| No Regularization                          |              | 0       | 0.11 | 31.1             | . <del></del>  | 0    | 0.1  | 35.7             |            | 0     | 0.15 | 35.2             |
| Label Smoothing $D_{J_1}$ ( $\gamma=0.1$ ) | 1            | 0.11    | 0.23 | 31.3 <b>+0.2</b> | 1              | 0.11 | 0.18 | 36.9 <b>+1.2</b> | 1          | 0.11  | 0.18 | 36.5 <b>+0.8</b> |
| Label Smoothing $D_{J_1}$                  | 1            | 0.35    | 0.38 | 31.7 <b>+0.6</b> | 1              | 0.50 | 0.40 | 37.2 +1.5        | 1          | 0.693 | 0.47 | 37.5 +2.3        |
| Confidence Penalty $D_{\rm J_0}$           | 0            | 0.28    | 0.55 | 31.6 +0.5        | 0              | 0.76 | 0.81 | 37.5 <b>+1.8</b> | 0          | 0.95  | 0.86 | 37.4 +2.2        |
| GER $D_{\mathbf{J}_{\alpha}}$              | 0.7          | 0.65    | 0.47 | 32.0 <b>+0.9</b> | 0.5            | 1.00 | 0.56 | 37.5 <b>+1.8</b> | 0.85       | 0.52  | 0.37 | 37.6 <b>+2.4</b> |

BLEU scores and normalized entropy of  $p_{\theta}$  on test sets for WMT'14 De-En, WMT'14 De-En, and MTTT Fr-En. Results include baseline models with no (entropy) regularization and standard label smoothing with  $\gamma$ =1.

#### **Experimental Findings**



#### **Experimental Findings**

|                              | Sparsity Threshold              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                              | $e^{-10}$                       | $e^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Label Smoothing $D_{J_1}$    | $38\% \pm 0.01\%$               | $0.0\%\pm5\mathrm{e}	extsf{e}	extsf{e}$ |  |  |  |  |
| Confidence Penalty $D_{J_0}$ | $54\%\pm5\mathrm{e}\text{-}3\%$ | $0.7\%\pm4\text{e-}4\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

40 Reference Sequence Ranking 50 Word) Alpha 60 2 (Avg. per 1 [0,0.25)[0.25, 0.5)[0.5, 0.75)[0.75,1)80 90 0.25 0.50 0.75 Normalized Entropy

Percentage of words with <  $\varepsilon$ probability mass at different values of  $\varepsilon$ . All models used in the calculation have entropy within the same 1%.

- Large probabilistic models need regularizers; various forms of entropy regularization have proven their merit in practice
- Many classes of entropy regularizers fit into our *generalized entropy regularization* framework.
- For the language generation tasks we consider, all regularizers can lead to good performance, suggesting we may generally desire a higher entropy solution  $p_{\theta}$ .
- Some of these regularizers may be better suited for certain tasks due to the nature of the underlying divergence measure.

# Thanks for watching

Title: Generalized Entropy Regularization: or There's Nothing Special about Label Smoothing Authors: Clara Meister, Elizabeth Salezky, and Ryan Cotterell Link to Paper

