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Speech Translation
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Challenges of Speech Input

c    h    a    r    a    c    t    e    r    s      →     long sequences
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Impacts: 
- Memory 
- Distance between dependencies 
- Training efficiency

Performance Impact: 
- End-to-End model performance varies based on 
    dataset & size, language pair… 
- Cascaded models perform better in many settings

10x longer 😱

Discretized audio –– speech frames

① Length



Challenges of Speech Input
• Low-Resource Settings 
‣ Larger difference in performance between architectures 

‣ End-to-end models do not see enough data to learn variation
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p p

p … ②  Variation in frame values

③  Variation in number of frames per phone

TEXT: 

SPEECH: 
frames

p …
frames



This Work
① End-to-End vs Cascade comparison 

‣ Single dataset with much previous work:  
Fisher Spanish–English 

‣ Compare multiple resource settings:    
HIGH (160hr)   MED (40hr)   LOW (20hr) 

② Phone Features to address challenges of speech input 
‣ Compare architectures:    

End-to-End       Cascade

!5



Models with Phone Features
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translation
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⊕

Model 2: 
Phone End-to-End

ST

translation

Model 3: 
Phone Segmentation

R OH H OH

Salesky et al. (2019)sentence sɛntəns



Phone Features

See paper or Q&A for more!

Mapping between phone quality and the 
ASR models used for alignment generation, 
with the models’ WER on Fisher Spanish test



Phone Features
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Note: uniqued for clarity

gold match
mismatch

Mapping between phone quality and the 
ASR models used for alignment generation, 
with the models’ WER on Fisher Spanish test

See paper or Q&A for more!



①  End-to-End vs Cascaded
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End-to-End vs Cascaded Models
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① Best end-to-end > Best cascade

③ Low-Resource comparisons lacking

② Architecture comparisons lacking

④ Best [academic] cascade from 2014

Cascade 
BPE targets:    +2-4↑ 
Beam search: +4-8 ↑

End-to-End
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Weiss et al. (2017)

Kumar et al. (2014) 
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① Best end-to-end > Best cascade

Our Baseline Cascade

③ Low-Resource comparisons lacking

② Architecture comparisons lacking

④ Best [academic] cascade from 2014

Cascade 
BPE targets:    +2-4↑ 
Beam search: +4-8 ↑

+8.5

+10.3

+13.6
End-to-End

Cascade
Weiss et al. (2017)



PSA
• Tuning models & parameters matters 

‣ Can change relative conclusions when making model comparisons
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②  Phone Features
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Models with Phone Features
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Salesky et al. (2019)

Recall



Models with Phone Features
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Recall

② Variation in frame values

③ Variation in number of frames per phone

① Length

Speech Input Challenges

①② ③①②③



Results with Phone Features
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①  Significant performance improvements 
‣Improvements of 10.9-22.1 over baseline E2EProposed Proposed Proposed 



Results with Phone Features

!17

Mu
lti

-re
fe

re
nc

e B
LE

U 
(4

-Re
f)

0

10

20

30

40

50

HIGH (160hr) MID (40hr) LOW (20hr)

Cascade
End-to-End

Phone Features

Baseline E2E Phone Cascade

①  Significant performance improvements

②  More data efficientBaselines Baselines Baselines Proposed Proposed Proposed 



Results with Phone Features
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①  Significant performance improvements

②  More data efficientBaselines Baselines Baselines Proposed Proposed Proposed 

③  Benefits of phones remain over SOTA ASR



Details:  Zoom-In
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(shown relative to best baseline: Baseline Cascade)

Training Time



Feature Quality
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Note: non-uniqued result

Phone Cascade Phone End-to-End



Conclusion
• Phone features are very effective, at multiple resource settings! 

‣ Build models with intuitions from phone features 

• Performance on high-resource settings ⇏ performance on low-resource  

‣ Test models on multiple resource settings 

• Cascades are competitive and often better than current E2E models 

‣ Compare against strong cascaded baselines

!21


