Phone Features Improve Speech Translation

Elizabeth Salesky

Alan W Black

Speech Translation

Challenges of Speech Input

1 Length

Discretized audio – speech frames

Impacts:

- Memory
- Distance between dependencies
- Training efficiency

$c h a r a c t e r s \rightarrow long sequences$

Performance Impact:

- **End-to-End** model performance varies based on dataset & size, language pair...
- **<u>Cascaded</u>** models perform better in many settings

Challenges of Speech Input

• Low-Resource Settings

Larger difference in performance between architectures End-to-end models do not see enough data to learn variation

③ Variation in number of frames per phone

1 End-to-End vs Cascade comparison

- Single dataset with much previous work: **Fisher Spanish-English**
- Compare multiple resource settings: HIGH (160hr) MED (40hr) LOW (20hr)

(2) Phone Features to address challenges of speech input

Compare architectures: End-to-End Cascade

Models with Phone Features

CASCADE

END-TO-END

Salesky et al. (2019)

<u>See paper or Q&A for more!</u>

Alignment Quality	WER	ASR Supervision
Gold	_	Gold transcript
High	23.2	Salesky et al. (2019)
Med	30.4	Seq2Seq ASR
Low	35.5	Kaldi HMM/GMM

Mapping between phone quality and the ASR models used for alignment generation, with the models' WER on Fisher Spanish test

Phone Features

<u>See paper or Q&A for more!</u>

Alignment Quality	WER	ASR Supervision
Gold	—	Gold transcript
High	23.2	Salesky et al. (2019)
Med	30.4	Seq2Seq ASR
Low	35.5	Kaldi HMM/GMM

Mapping between phone quality and the ASR models used for alignment generation, with the models' WER on Fisher Spanish test

2	
0	m
0	m
0	m
а	m

(1)

Phone Features

Note: uniqued for clarity

(1) End-to-End vs Cascaded

End-to-End vs Gascaded Models

Cascade BPE targets: +2-4↑ Beam search: +4-8 ↑

(1) **Best end-to-end > Best cascade** (2) Architecture comparisons lacking **③ Low-Resource comparisons lacking (4) Best [academic] cascade from 2014**

/// Weiss et al. (2017)

Cascade

End-to-End

End-to-End vs Gascaded Models

Cascade BPE targets: +2-4↑ Beam search: +4-8 ↑

1) **Best end-to-end > Best cascade (2)** Architecture comparisons lacking **③ Low-Resource comparisons lacking**

Tuning models & parameters matters

Can change relative conclusions when making model comparisons

2 Phone Features

CASCADE

Recall

END-TO-END

Models with Phone Features

Salesky et al. (2019)

Speech Input Challenges

1 Length

Recall

(2) Variation in frame values

③ Variation in number of frames per phone

Models with Phone Features

Results with Phone Features

Significant performance improvements (1)Improvements of 10.9-22.1 over baseline E2E

Phone Features

Cascade

End-to-End

Results with Phone Features

1 Significant performance improvements

2 More data efficient

/// Phone Features

Cascade

End-to-End

LOW (20hr)

Results with Phone Features

- **1** Significant performance improvements
- **2** More data efficient
 - **3** Benefits of phones remain over SOTA ASR

When Phone Features

LOW (20hr)

Details: Zoom-In

Model	HIGH	MID	LOW	•
Baseline End-to-End	118hr	40hr	22hr	-
Salesky et al. (2019)	41hr	13hr	10hr	
Baseline Cascade	76hr	19hr	12hr	
Phone Cascade	57hr	39hr	27hr	-
Phone End-to-End	42hr	20hr	13hr	
Hybrid Cascade	47hr	34hr	24hr	

Training Time

(shown relative to best baseline: **<u>Baseline Cascade</u>**)

Feature Quality

Phone Cascade

Phone End-to-End

Conclusion

- Phone features are very effective, at multiple resource settings!
 - Build models with intuitions from phone features
- Performance on high-resource settings # performance on low-resource
 - Test models on multiple resource settings
- Cascades are competitive and often better than current E2E models
 - Compare against strong cascaded baselines