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Abstract
When translating speech, special consideration for conver-
sational speech phenomena such as disfluencies is neces-
sary. Most machine translation training data consists of well-
formed written texts, causing issues when translating spon-
taneous speech. Previous work has introduced an interme-
diate step between speech recognition (ASR) and machine
translation (MT) to remove disfluencies, making the data
better-matched to typical translation text and significantly
improving performance. However, with the rise of end-to-
end speech translation systems, this intermediate step must
be incorporated into the sequence-to-sequence architecture.
Further, though translated speech datasets exist, they are typ-
ically news or rehearsed speech without many disfluencies
(e.g. TED), or the disfluencies are translated into the ref-
erences (e.g. Fisher). To generate clean translations from
disfluent speech, cleaned references are necessary for evalu-
ation. We introduce a corpus of cleaned target data for the
Fisher Spanish-English dataset for this task. We compare
how different architectures handle disfluencies and provide a
baseline for removing disfluencies in end-to-end translation.

1 Introduction

Spoken language translation applications suffer due to dis-
fluencies in spontaneous speech. In conversational speech,
speakers often use disfluencies such as filler words, repeti-
tions, false starts, and corrections. These speech phenomena
interfere with recognition and translation steps. In this work,
we use disfluent conversational speech from the Fisher Span-
ish dataset1, which has been translated to English [1, 2], with
the disfluencies faithfully translated.

Machine translation systems are typically trained using
well-structured and cleanly written text. The mismatch be-
tween clean training data and test data with speech phenom-
ena causes a drop in performance. Systems to detect and re-
move disfluencies from input speech, creating cleaner source
data for MT, have been shown to greatly improve the per-
formance of spoken language translation systems, even on
broadcast news and TED talks where these phenomena are
less common [3, 4, 5, 6, 7].

Before end-to-end models, different datasets could be
used to train the speech recognition and translation com-
ponents of a speech translation system. Where aligned
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speech and translations exist, the data is usually clean
speech�clean text, as in news data or TED talks, or dis-
fluent speech�disfluent translations, as in Fisher or meeting
data, where the disfluencies have been explicitly included in
the references for completeness, but are not labeled. Some
corpora with labeled disfluencies exist; these labeled sec-
tions can be removed to create clean target text. However,
only parts of these corpora have been translated and/or re-
leased [4, 8]. Using disfluent/disfluent parallel data, we can-
not score generated translations with disfluencies removed;
we need cleaned reference translations. We used MTurk to
create clean target data for the Fisher Spanish-English data.
This data will be released with the final paper.

Disfluency recognition and removal has previously been
performed as an intermediate step between speech recog-
nition (ASR) and machine translation (MT), to make tran-
scripts more similar to typical machine translation data. With
the rise of end-to-end sequence-to-sequence speech transla-
tion systems [9], disfluency removal would need to be in-
corporated into the model instead of handled as a separate
step. Further, implicit handling in the model architecture
may promote the ability to recognize disfluencies and correc-
tions specific to current data, outside of a set of handcrafted
labels. We hope this data will promote further research in
this area.

2 Data

For our experiments, we use the Fisher Spanish dataset2,
composed of telephone conversations between mostly native
Spanish speakers. The corpus consists of 819 transcribed
conversations on provided topics between strangers, yielding
∼160 hours of speech and 150k utterances. The transcripts
were translated and released by JHU3, with one reference for
the training data and four each for the dev and test sets.

This data is conversational and disfluent. Disfluencies
can be filler words and hesitations, discourse markers (you
know, well, mm), repetitions, corrections and false starts,
among others. The reference translations maintain and trans-
late where possible the disfluencies in the Spanish source.
Examples of certain types of disfluencies shown in both
source and target are below in Table 1.

We note that there can be many different and often over-
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Hesitation eh, eh, eh, um, yo pienso que es ası́.
uh, uh, uh, um, i think it’s like that.

Repetition Y, y no cree que, que, que,
And, and I don’t believe that, that, that

Correction no, no puede, no puedo irme para ...
no, it cannot, I cannot go there ...

False start porque qué va, mja ya te acuerda que ...
because what is, mhm do you recall now that ...

Table 1: Examples of disfluencies in Fisher Spanish-English,
in the Spanish transcripts and English reference translations

lapping types of disfluencies in a single utterance, as in this
example from the Spanish data, ‘también tengo um eh es-
toy tomando una una clase ...’ which contains filler words
(um, eh), a correction (tengo→ estoy tomando), and repeti-
tion (una, una) with overlapping scope. Additionally, con-
text affects whether some word types are disfluent (so, oh,
...), and so removing them in all cases will affect meaning.
Disfluency removal is a more complex problem than merely
recognizing disfluencies from a compiled list.

2.1 Mechanical Turk

To create clean ‘copy-edited’ reference translations, we
crowd-sourced the task on Amazon Mechanical Turk. Turk-
ers were presented with the original English translations in
context and asked to remove certain types of disfluencies
while maintaining meaning. We specify here filler words,
repetitions, corrections, false starts, with examples of each.
Where an utterance was deemed to have only disfluencies,
Turkers were instructed to enter ‘None’ for no content and
specify why in the comments. Turkers were paid a compet-
itive rate equating to a U.S. hourly minimum wage. Each
‘Human Intelligence Task’ (HIT) was limited to 5 utterances
to not overwhelm Turkers. The first utterance was a control,
allowing Turkers to familiarize themselves with the task, the
results of which are not included in our data. Utterances with
only 1 token were not crowd-sourced but labeled manually
by us.

We required that Turkers had an approval rate of 95%.
We had 1250 unique workers complete 26,270 HITS. The
ratio of approved to rejected HITs was 25:1. HITs were
rejected if answered implausibly fast, the answers were in-
complete, or they included clearly unrelated content. Each
utterance in the dev and test sets was cleaned by at least 2
Turkers to reduce variability, and for the larger training set,
one Turker.

2.2 Original vs Cleaned References

The cleaned references contain on average 3 fewer tokens per
sentence, reducing the average sentence length from 11.3 to
8.2. Most utterances contained at least one disfluency; only
35% of utterances were unchanged by Turkers. However,
16,829 sentences or 10.5% of all utterances were marked

only disfluencies. These ranged from single token utterances
(‘Mhm’) to potentially several (‘Hmm mm hmm mm we’).
They were typically very short (fewer than three tokens) and
contained only filler words or false starts; in context, most
can be viewed as backchanneling. Backchanneling, or ver-
bal cues to indicate attention, can sometimes convey infor-
mation or meaningful reactions (‘oh?’), and other times, may
be classified as disfluencies. To determine which, it is impor-
tant to view the utterance in context. In most cases, Turkers
reduced these utterances to ‘None’. Below we discuss anno-
tator agreement, and sources of least disagreement.

Below is an example of the types of changes made by
Turkers. We show the original Spanish transcript and the
disfluent English translation, along with the generated clean
reference. We use NIST’s sclite tool [10] to evaluate changes
made by Turkers in terms of insertions (I), deletions (D), and
substitutions (S).

SRC Y, bueno, y que, aunque no se ve
REF and, well, and that, even though you don’t see him
CLEAN *** *** and *** even though you don’t see him
Eval: D D D

Example of generated cleaned references (CLEAN) with
original Spanish source (SRC) and disfluent English target
(REF).

While many disfluencies can be removed through dele-
tions, false starts and corrections can often lead to inser-
tions, substitutions, or reorderings in the cleaned text. Table
2 shows the percentage breakdowns of insertions, deletions,
and substitutions made by Turkers in cleaning each of the
datasets.

Dataset Insertions Deletions Substitutions
train 0.6% 25.8% 2.8%
dev 1.5% 31.7% 5.2%
dev2 1.0% 33.2% 4.5%
test 1.2% 31.4% 4.5%

Table 2: Percentages of token insertions, deletions, and sub-
stitutions made by Turkers in generating the cleaned refer-
ence translations.

To verify the content changed by Turkers, we first look
at the agreement between Turkers. For the dev, dev2, and
test datasets, we collected annotations for each utterance
from two different Turkers to measure consistency. We use
the two collected annotations for each utterance to make two
clean reference translations. We can look at the BLEU (n-
gram precision) [11] between the two references as a mea-
sure of annotator agreement, shown in Table 3. The typical
preprocessing scheme for this dataset is lowercased and with
all punctuation removed [1, 2, 9]; to provide a fair compari-
son, we remove punctuation and case to test annotator agree-
ment. We show the average BLEU against a single reference,



as a multi-reference score would not be a fair comparison
here. We find a high level of agreement between MTurk an-
notators, suggesting this is a task that can be crowd-sourced.
For context, we additionally show the average BLEU score
between the pairs of the four original references for each of
these datasets, as well as the BLEU score of the two clean
references against the original disfluent translations.

We find that the inter-annotator BLEU score is very high
across the cleaned corpus, and considerably higher than the
original data’s inter-annotator BLEU. This is unsurprising,
as in our task, the two Turkers are given the same English
sentence and told to edit specific content; unaltered con-
tent will be the same between the two Turked references.
In the original collection, the four Turkers were given the
same Spanish source sentence and independently generated
translations, leading to more variability. The original inter-
annotator BLEU can serve as a benchmark for our translation
systems, as this is the BLEU between human translators on
this data.

We also compare the clean translations to the original dis-
fluent translations. Annotator-Original uses the original data
as references to score the new clean MTurk data as ‘hypothe-
ses’, while Original-Annotator does the opposite, scoring the
disfluent translations as hypotheses against the cleaned refer-
ences. We see that scoring disfluent data against clean refer-
ences has a greater impact on BLEU than the opposite: the
Original-Annotator BLEU is much lower, demonstrating the
significant impact that disfluent outputs can have when scor-
ing translations of an MT system expecting clean output. We
later use these scores as benchmarks for different training
data conditions. For all values in Table 3 variance is less
than 0.25 BLEU.

Comparison dev dev2 test
MTurk Inter-Annotator BLEU 63.04 64.32 64.00
Original Inter-Annotator BLEU 34.81 35.80 33.85
Annotator-Original BLEU 28.45 28.90 28.31
Original-Annotator BLEU 21.00 21.44 20.82

Table 3: Measures of MTurk annotator agreement: Inter-
Annotator BLEU between generated MTurk translations, and
among the 4 original translations. For comparison, BLEU
between the clean references to the original disfluent refs.

We further look at a data sample to verify the content
changed is disfluent. We find a set of 268 unique filler words
within the original translations after punctuation is removed,
119 ignoring case, in part because they were crowdsourced
and different translators used slightly different schemes. Of
the tokens deleted by Turkers, 9.5% are filler words. Specif-
ically for dev, we find Turkers disagree on at least one to-
ken in 56% of utterances. Of these, some involve context-
dependent disfluencies such as backchanneling, or correc-
tions where Turkers re-phrased with minor differences. In
most cases, backchanneling was marked as disfluent and re-
duced to ‘None’). Some disagreements involve insertions,

either of pronouns (e.g. ‘imagined it’ → ‘i imagined it’),
or function words to make utterances more grammatical in
English where Turkers introduced different tokens. A larger
percentage of disagreements involved deletion of transitional
words or phrases (sentence-initial ‘and’) to make utterances
more sentence-like. In these cases, Turkers typically re-
moved overlapping spans, with disagreements based on the
span of tokens removed.

3 Experiments

Initial work on the original Fisher-Spanish dataset used tra-
ditional HMM-GMM ASR systems chained together with
phrase-based MT systems using lattices [1, 2]. More re-
cently, it was demonstrated in [9] that end-to-end sequence-
to-sequence models perform competitively on this task.

We here focus on translation from the Spanish text tran-
scripts as an initial exploration of the problem of translating
directly from noisy speech to clean references without a sep-
arate disfluency removal step. We use sequence-to-sequence
models and, as a baseline, first demonstrate the efficacy of
our models on the original disfluent Fisher Spanish-English
task, comparing to the previously reported numbers on the
MT subtask [1, 2, 9]. Post et al. [1] and Kumar et al. [2]
are both traditional systems, while Weiss et al. [9] is a deep
LSTM-based sequence-to-sequence model. We then com-
pare these results with models trained using our collected
clean target data. Finally, we look at the mismatched case
where we train on disfluent data and evaluate on a cleaned
test set; this is a more realistic scenario, as clean training
data is difficult to collect, and we cannot expect to have it for
each language and use case we encounter. We hope this will
spur future work on this lower-resource task.

We compare LSTM-based models, similar to [9], to
Transformer [12] models as implemented in OpenNMT [13].
Our LSTM models use a two-layer bidirectional LSTM en-
coder and two-layer LSTM decoder, 500-dim embeddings,
and Luong attention [14]. We follow the default OpenNMT
training procedure, optimizing with SGD for 13 epochs us-
ing a batch size of 32. Our Transformer models follow the
suggested parameters from OpenNMT, with layer size 512,
sinusoidal position encodings, dropout of 0.1, label smooth-
ing set to 0.1 [15], and optimizing with adam using the sug-
gested learning rate scheme. We reduce the number of layers
to four for our smaller dataset. We batch and normalize by
tokens, and compute gradients based on four batches. We
experimented with four batch sizes holding other parameters
constant {548,1096,1644,2192}, and determined 1644 is the
best for this dataset; all reported numbers use this value. All
models use the same preprocessing as previous work on this
dataset [1, 2, 9]: lowercasing and removing punctuation.

Table 4 shows our results on the original disfluent data.
We provide both single and multi-reference scores: Fisher
has four reference translations for dev, dev2, and test,
which boosts scores considerably as hypotheses can match
in any of the references. We do not have four references for



dev dev2 test
System 1R 4R 1R 4R 1R 4R
LSTM 35.2 61.9 36.3 62.8 33.3 60.4
Transformer 32.1 57.0 32.7 58.1 30.6 55.4
Post et al. [1] – – – – – 58.7
Kumar et al. [2] – – – 65.4 – 62.9
Weiss et al. [9] – 58.7 – 59.9 – 57.9

Table 4: BLEU score using original disfluent references.
Comparing average single reference score (1R) vs multi-
reference score using all four references (4R).

our clean data, so the single reference scores provide a bet-
ter basis for comparison to the clean target task. We show
both of our models perform competitively, approaching or
exceeding previous best results. Further, our single reference
scores approach the inner-annotator BLEU between the four
human-generated references, shown in Table 3. For test,
our LSTM model has a BLEU of 33.3 on a single reference,
as compared to 33.8 between the four human translators. The
LSTM model is consistently slightly better than the Trans-
former model. We note though that the Transformer is quite
sensitive; it is possible with other parameters, it would per-
form better.

dev dev2 test
System 1R 2R 1R 2R 1R 2R
LSTM 28.18 34.07 28.87 35.44 27.96 33.84
Transformer 26.20 32.16 27.27 33.87 26.31 31.89

Table 5: BLEU score using new cleaned references to train
and evaluate. Comparing average single reference score
(1R) vs multi-reference score using both generated refer-
ences (2R).

Turning to the task of generating clean translations, we
now make use of our clean target data to train. Table 5
shows our results using this new data. BLEU scores go down
on the clean task; a main contributor is filler words, which
previously may have been overgenerated and provided par-
tial n-gram matches and have now been removed. For ex-
ample, removing only our list of 119 filler words from the
original references and scoring our disfluent LSTM model’s
with a single reference drops the score on test from 33.8
to 18.40. In this dataset, filler words are quite one-to-one
and easy to generate (see Table 1). Our systems improve on
the mismatched condition, learning not to generate some dis-
fluencies: we see scores on average 5.5 BLEU higher than
the Original-Annotator scores in Table 3, which scores the
disfluent target data against our new clean references, and
can be seen as a lower bound. Further, the original Spanish-
English data is mostly one-to-one and monotonic. With the
cleaned targets, the alignment between source and target is
not as clear, making the translation task harder. Finally, the
utterances, which were quite short to begin with, are now

three tokens shorter on average. This means a single mis-
take has higher consequences for BLEU, which uses 4-gram
precision.

Both architectures are able to learn to remove many dis-
fluencies using the clean target data. Figure 1 shows an ex-
ample from the LSTM model attention where it has clearly
learned to place less weight on source disfluencies, generat-
ing the fluent translation ‘No not yet.’ Here the LSTM model
has learned to both delete filler words (‘mm’) and repeated
words and phrases (‘no no’, ‘no todavı́a’).

Figure 1: LSTM attention: with cleaned target data, learns to
place less weight on source disfluencies

Table 6 shows an example of the different translations
generated by the LSTM and Transformer models.

SRC también tengo um eh estoy tomando una clase ...
REF i also have um eh im taking a marketing class ...
CLEAN im taking a marketing class ...
LSTM im taking a class of marketing
Transformer i also have a class of marketing classes

Table 6: Example outputs training with clean target data

While we make use of cleaned target references here,
these references are expensive and time-consuming to cre-
ate, even making use of crowdsourcing. We cannot expect
to have this resource to train on for every language and use
case, though we may have smaller datasets available for dev
and test. Simulating this more likely scenario, Table 7 shows
our results training on the original parallel disfluent data, and
evaluating on cleaned dev and test data. As expected, we do
similarly to the Annotator-Original scores in Table 3. Using
clean data, the entropy after each word is much lower, lead-
ing to lower perplexities and clearer, more concise transla-
tions. With the disfluent data, the model is less able to tran-
sition between meaningful tokens: filler words and clause
restarts are able to appear in many places, causing the model
to stutter. It not only generates filler words and repetitions,
but loses general coherence, ex) ‘I would tell you, I mean,
it’s more, it’s easier, no, I mean’. In general, disfluent mod-
els overgenerate, producing utterances 1.25× longer than our
clean models.

Though the Transformer here is consistently slightly
worse than the LSTM models, we speculate it could more



dev dev2 test
System 1R 2R 1R 2R 1R 2R
LSTM 20.88 26.11 22.03 27.58 20.68 26.01
Transformer 19.50 24.35 21.52 26.48 20.52 25.72

Table 7: No cleaned training data condition: BLEU score
training on disfluent target data and evaluating on cleaned
references. Comparing average single reference score (1R)
vs multi-reference score using both generated references
(2R).

easily be extended to lower-training data settings. Self-
attention within the Transformer models’ decoder allow the
decoder to attend to all previous decoder timestamps [12].
We hypothesize that this mechanism could help the decoder
better learn to generate clean fluent text from clean training
data, particularly when disfluencies depend on the generated
context (corrections, etc). By attending to previous decoder
states, the model may learn not to generate repeated words,
for example. Comparing the LSTM and Transformer models
trained with the clean target data, we see this borne out: the
Transformer model has two-thirds fewer generated repeti-
tions on test. However, both architectures learn to remove
repeated words quite well: the original test references con-
tain 657 repeated tokens, while and the LSTM model gener-
ates only 67, and the Transformer 44. We will investigate
this claim in future work by pre-training this model on more
fluent parallel data, such as TED, to see if pre-training the
decoder self-attention enables us to do this task without re-
quiring as much cleaned training data. We hope that this data
and our initial results encourage further work on this task,
and additionally provide a benchmark to aim for using less
clean target data to train, the more common condition in con-
versational speech translation.

4 Conclusion

Machine translation systems for speech suffer due to conver-
sational speech phenomena, particularly the presence of dis-
fluencies. Removing disfluencies improves performance of
downstream translation, as it causes data to better match typ-
ically clean training text. However, previous work on remov-
ing disfluencies for speech translation have done so as a sep-
arate step in between speech recognition and machine trans-
lation, which is not possible using end-to-end systems. We
release cleaned target data for a parallel speech and text cor-
pus, enabling further work in this area. We compare disflu-
ency handling among two architectures, and present a base-
line to implicitly remove disfluencies within the context of
end-to-end translation models.
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