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Abstract

This paper describes the AFRL-MITLL
statistical MT systems and the improve-
ments that were developed during the
WMT15 evaluation campaign. As part of
these efforts we experimented with a num-
ber of extensions to the standard phrase-
based model that improve performance on
the Russian to English translation task cre-
ating three submission systems with differ-
ent decoding strategies. Out of vocabulary
words were addressed with named entity
postprocessing.

1 Introduction

As part of the 2015 Workshop on Machine
Translation (WMT15) shared translation task, the
MITLL and AFRL human language technol-
ogy teams participated in the Russian–English
translation task. Our machine translation sys-
tems represent enhancements to both our sys-
tems from IWSLT2014 (Kazi et al., 2014) and
WMT14 (Schwartz et al., 2014), the addition of
hierarchical decoding systems (Hoang and Koehn,
2008), neural network joint models (Devlin et al.,
2014) and the utilization of Drem (Erdmann and
Gwinnup, 2015), a method of scaled derivative-
free trust-region optimization, during the system
tuning process.

2 System Description

We submitted systems for the Russian-to-English
machine translation shared task. In all submitted
systems, we used either phrase-based or hierarchi-
cal variants of the moses decoder (Koehn et al.,

†This work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8650-09-D-6939-029.

‡This work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8721-05-C-0002.

2007). As in previous years, our submitted sys-
tems used only the constrained data supplied when
training.

2.1 Data Usage

In training our Russian–English systems we uti-
lized the following corpora to train translation and
language models: Yandex1, Commoncrawl (Smith
et al., 2013), LDC Gigaword English v5 (Parker et
al., 2011) and News Commentary. The Wikipedia
Headlines corpus2 was reserved to train named en-
tity recognizers.

2.2 Data Preprocessing

As with our WMT14 submission systems, prepro-
cessing to address issues with the training data was
required to ensure optimal system performance.
Unicode characters in the private use, control char-
acter(C0, C1, zero-width, non-breaking, joiner,
directionality and paragraph markers), and unal-
located ranges were removed. Punctuation nor-
malization and tokenization using Moses prepro-
cessing scripts were then applied before lower-
casing the data. The Commoncrawl corpus was
further processed as in Schwartz et al. (2014)
to exclude wrong-language text and to normalize
mixed-alphabet spellings.

2.3 Factored Data Generation

We generated a class-factored version of the paral-
lel Russian–English training data by using mkcls
to produce 600 word classes for each side of the
data. The factored data was then used to create a
factored translation model and an in-domain class
language model (Brown et al., 1993) for the En-
glish portion.

1https://translate.yandex.ru/corpus?lang=en
2http://statmt.org/wmt15/wiki-titles.tgz
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2.4 Phrase and Rule Table Training
Phrase tables and rule tables were trained on the
preprocessed data using scripts provided with the
moses distribution. Both rule tables and phrase
tables utilized Good-Turing discounting (Gale,
1995). Hierarchical lexicalized reordering mod-
els (Galley and Manning, 2008) were also trained
for use in the phrase-based systems.
An additional phrase table was trained on the

lemmatized forms of the Russian training data.
These lemmatized forms were generated by the
mystem3 tool.

2.5 Language Model Training
The English data sources listed in §2.1 were
used to train a very large 6-gram language model
(BigLM15). The English portion of the parallel
data was processed into class form as outlined in
§2.3 to generate an in-domain 600 class language
model. kenlm (Heafield, 2011) was used to train
these 6-gram models. These models were then bi-
narized and stored on local solid-state disks for
each machine in our cluster to improve load time
and reduce fileserver traffic.

2.6 Operation Sequence Models
Using both the Russian and English data generated
in §2.3, we trained order-5 Operation Sequence
models (Durrani et al., 2011) for both the surface
and class-factored forms of the data. These models
improve translation quality by introducing infor-
mation on the sequence of operations occuring at
both the surface and class factor level. These mod-
els were then used in our factored phrase-based
system.

2.7 Neural Network Joint Models
Neural network joint models (Devlin et al., 2014)
are neural network based language models with a
source window context. We trained these mod-
els on the alignments produced by mgiza (Gao
and Vogel, 2008) over the parallel training data
and then used them to rescore n-best lists. As
in (Devlin et al., 2014), we trained four different
models. The standard model is “source-to-target,
left-to-right,” (s2t, ltr) which evaluates p(ti|T, S)
with target window T = (ti−1, ti−2, . . . , ti−n) and
S = (sk−m, . . . sk, . . . , sk+m), where sk is word-
aligned to ti. The four permutations of this are de-
fined by (a) whether to count upwards from i, in-

3https://tech.yandex.ru/mystem

stead of downwards (this is left-to-right vs right-to-
left), and (b) whether to swap the sources and tar-
gets entirely (source-to-target vs target-to-source).
We experimented with NNJM decoding (via a

simple feature function in Moses). We achieved
some benefit (+0.48 BLEU) with this approach but
rescoring a single NNJM source-to-target on 200-
best lists produced better results in this case (+0.90
BLEU). This was on a single system tuned on
newstest2013, tested on newstest2014 (base-
line 29.07 BLEU). In testing, 2-hidden layer
rescoring models outperformed the 1-hidden layer
decoding model.
The vocabulary for the NNJMs were created by

using all words that appeared at least a certain
number of times in the training data. We experi-
mented with minimum counts of 20 and 25. Us-
ing 20, our vocabulary was approximately 80,000
Russian words and 40,000 English; with 25, it was
70,000 and 34,000, respectively. We compared
rescoring with a single, standard model (s2t, l2r)
to rescoring with all directions with results listed
in Table 1.

Baseline 1 NNJM 4 NNJMs
20 25 20 25

max 27.71 27.90 28.05 27.90 28.07
mean 27.48 27.61 27.81 27.67 27.60

Table 1: NNJM Rescoring on newstest2015,
optimizing on newstest2014, case-insensitive
BLEU.

2.8 Processing of Unknown Words
In our submission systems, we allowed words
unknown to the decoder to be passed through
to the translated output. We developed three
post-processing techniques to address unknown
words: named entity (NE) tagging and transla-
tion (§2.8.2), permissive NE translation (§2.8.3),
and selective transliteration of the remaining OOV
words (§2.8.4). The first two techniques rely on
our in-house transliteration mining of NE pairs,
which is described in §2.8.1.
We applied all three post-processing steps to

the output of our factored phrase-based submis-
sion system; due to time constraints, only the last
two steps were applied to the output of our phrase-
based and hierarchical submission systems.
Score improvements in uncased BLEU are re-

ported in Table 2. We see that application of
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permissive lookup and selective transliteration
yielded an improvement of +0.48 BLEU versus a
baseline system, while the application of named
entity tagging and translation, permissive lookup
and selective transliteration yielded a +0.57 BLEU
gain.

2.8.1 Transliteration Mining
Both NE processing steps (§2.8.2 and §2.8.3)
make use of a NE pairs list that we developed
through transliteration mining of the Russian-
English CommonCrawl. In transliteration mining
(Kumaran et al., 2010; Zhang et al., 2012), we use
transliteration as a tool to detect similar-sounding
words in the parallel text that may correspond to
names. Our process for detecting transliterated NE
is generative and rule-based. We used mystem to
tag NE in the Russian text, and then used capital-
ization and transliteration as clues to find match-
ing NE in the parallel English sentences. English
words were considered candidate matches if they
were capitalized, but not sentence-initial; we ex-
cluded all-caps words, since acronyms often do not
transliterate well. We also required the English
candidate words to match the initial sound of the
Russian NE.
We checked the initial sound match by translit-

erating the Russian words according to the text-
book values of the Russian letters, and then check-
ing for matches with the English spellings, allow-
ing certain spelling variations. These variations
include instances where Russian lacks an English
sound, and substitutes a similar sound (e.g., En-
glish h written in Russian with the letters for x or
g, and English w written with the Russian letters
for v or u), as well as common English spelling al-
ternations like n/kn, s/c, c/k, etc.
An iterative process of refining spelling alter-

nations was applied by manual observation of
known NE pairs that were not matched via exist-
ing rules; notably, this introduced spelling varia-
tions for words originating from a third language.
For example, English j typically represents [dƷ]
but may also indicate [h] in words of Spanish ori-
gin, so we need to allow the spelling alternation
x/j . Similarly, the letters gi may represent [dƷ] in
Italian names like Giovanni, so we need to allow
transliterated Russian dzh to match English gi.
At this point in the transliteration mining pro-

cess, we have derived a list of capitalized English
words that have initial spellings potentially match-
ing the initial sound of the Russian NEword. If the

English sentence contains more than one such can-
didate, we select the word with the smallest edit
distance from the Russian transliteration, using a
length-normalized Levenshtein distance. For this
calculation, any spelling variation counts as an edit
distance change, so we penalize variations such as
k for c.
For NE tagging and translation (§2.8.2), we re-

turn only the NE pairs with zero edit distance. For
permissive NE translation, we allow some varia-
tion, as described in §2.8.3.

2.8.2 Named Entity Tagging and Translation
The named entity post-process uses Russian–
English pairs in the combined names and titles
lists from the Wikipedia Headlines corpus (the
“Wiki pairs list”) and the transliteration-mined
list (§2.8.1) to replace unknown words with En-
glish equivalents. We began by stemming each
list to remove Russian noun and adjective end-
ings. To the Wiki pairs list, we added additional
pairs yielded by replacing word-internal punctu-
ation marks in existing Wiki pairs with spaces.
We used giza++ (Och and Ney, 2003) to align
Russian–English phrases from the Wiki list. We
then used these alignments to start a generated list
of pairs with only one Russian word and one En-
glish word in a pair. Of the aligned pairs, we only
included pairs that were aligned with one another
three or more times. Only one-to-one alignments
would count toward the three alignment rule. We
also removed entries where the English word in
the pair occurred in a list of stop-words as well as
where the English word consisted of only digits.
To the generated list, we also added pairs directly
from the Wiki list with both single Russian words
and single English words. Finally, we also added
the highest quality pairs from the transliteration-
mined list.
Upon encountering a single word without word-

internal punctuation, the system first searches
through the generated list, and returns a list of
found guesses. If no items are found in the gen-
erated list, the Wiki list is then searched. If still no
guesses are found, then the transliteration-mined
list is searched. The same process occurs for a
word containing word-internal punctuation, but af-
ter a failed iteration of the search process, the punc-
tuation is replaced with a space and the Wiki lists
are searched. Finally if that iteration fails, then
the search process occurs on each individual word
and a concatenation of English definitions is added
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to the guess list for every possible combination of
guesses for each component word. An English lan-
guage model is used to choose among the guesses.

2.8.3 Permissive Named Entity Translation
Permissive NE look-up is applied to translate OOV
words that remain untranslated after NE tagging
and translation (§2.8.2), or when the NE tagging
and translation step is unavailable. In this second
step, we expand the NE pairs list to include pairs
with greater edit distance when they are validated
by repeat occurrence.
While the NE tagging and translation step only

uses transliteration-mined NE pairs which match
exactly, the permissive step allows NE pairs that
have some spelling variation. We apply two addi-
tional restrictions to ensure good quality matches,
length disparity and instance ratio. We restrict the
output to words which come from sentences that
do not differ too much in length. A large length
disparity suggests a sentence alignment error in the
parallel text, which would make the NE match un-
reliable.
We also restrict the output to words which are

fairly frequent among other matches for the same
Russian words, calculating an instance ratio as the
number of times we see this English word with
this Russian word, divided by the total number of
English matches we record for this Russian word.
Rare instances may be mistakes or spelling vari-
ants that we would prefer to exclude. For example,
we found the Russian nameКонстантинmatched
with English Constantine 117 times, and matched
with the spelling Konstantine only 1 time, so we
do not want to collect Константин/Konstantine
as a NE pair.
We keep the NE pairs if:

1. The length-normalized edit distance < 0.2

2. The length-normalized edit distance falls be-
tween 0.2 and 0.5, inclusive, and sentence
length disparity < 2 and instance ratio > 0.01

With these restrictions, we derived 32,560 poten-
tial NE pairs.
Subsequently, an additional transliteration min-

ing step was conducted, to collect NE pairs from
any capitalized Russian words, not just the words
tagged as NE by mystem. We excluded Russian
acronyms, sentence-initial words, and personal
pronouns (which are capitalized in some styles

of Russian writing). Applying the previously de-
scribed restrictions for edit distance, instance ra-
tio, and sentence length disparity, we derived an
additional 22,370 capitalized-word NE pairs. The
combined mystem tagged and capitalized-word
NE pairs lists were used in the permissive transla-
tion of OOV words, considering both the original
form of the Russian OOV word and its stemmed
form.
For the phrase-based and hierarchical systems,

which were processed without the NE tagging and
translation step, the wiki pairs list was added to the
mined NE pairs list for permissive OOV transla-
tion.

2.8.4 Selective Transliteration of Remaining
Out-of-Vocabulary Words

As a final post-processing step, we transliterate
some of the remaining OOV words. We attempt to
distinguish OOV NE from common words, drop-
ping commonwords and transliterating names. We
hypothesize that retaining transliterated forms of
NE will improve readability, even if the output is
not a direct match to the English reference.
We attempt to distinguish NE from common

words on the basis of capitalization in the Russian
source file. Capitalized words that do not begin a
sentence are assumed to be NE, and are translit-
erated. For example, transliteration is the source
of the name Kostenok in first example sentence
shown in Figure 1. Lowercased words, and cap-
italized words that begin a sentence, are assumed
to be commonwords and are dropped from the out-
put.

3 Results

We submitted three systems for evaluation, each
employing a different decoding strategy: tradi-
tional phrased-based, hierarchical, and factored
phrased-based. Each system is described be-
low. Automatically scored results reported in
BLEU (Papineni et al., 2002) for our submission
systems can be found in Table 3.
Finally, as part of WMT15, the results of our

submission systems listed in Tables 3 were ranked
by monolingual human judges against the machine
translation output of other WMT15 participants.
These judgements are reported in WMT (2015).

3.1 Phrased-Based
We used a standard phrase-based approach, using
lowercased data. The lemma-based phrase table
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System Process Applied baseline BLEU postproc BLEU ∆ BLEU

phrase-based PermLookup + SelTranslit 27.72 28.20 +0.48
hiero PermLookup + SelTranslit 27.43 27.91 +0.48
pb-factored NEProc + PermLookup+ SelTranslit 27.18 27.75 +0.57

Table 2: NE post-processing improvement measured in uncased BLEU

described in §2.4 was used as a backoff phrase
table. We trained a hierarchical lexicalized re-
ordering model, and used two separate class based
(factored) language models; one using 600 classes
on the in-domain target-side parallel data, and the
other using the LDC Gigaword-English v5 NYT
corpus. N-best lists from moses were rescored
with 4-way NNJMs, and the system weights were
tuned with PRO (Hopkins and May, 2011). Selec-
tive transliteration as described in §2.8.4 was then
applied to the decoder output.

3.2 Hierarchical
New for this year, we trained a hierarchical system
using the same parallel data as our phrase-based
systems. The rule table was created as outlined in
§2.4 and then filtered to only contain rules relat-
ing to the Russian content of the newstest test
set for years 2012–2015. This filtering was per-
formed in order to reduce the size of the rule table
for both system memory requirements and expedi-
ency. The incremental-search algorithm (Heafield
et al., 2013) and BigLM15were used to decode the
dev (newstest2014) and test (newstest2015)
data. Drem was employed to tune feature weights,
optimizing the sum of the expected sentence-
level BLEU and expected sentence-level Meteor
(Denkowski and Lavie, 2014) metrics. Finally, se-
lective transliteration was employed as described
in §2.8.4.

3.3 Factored Phrase-Based
For our last system, we used a factored phrase-
based approach (Koehn and Hoang, 2007) where
the surface form of the training data was aug-
mented with word classes. These classes were
generated on the parallel training data outlined in
§2.4 using mkcls to group the words into 600
classes for both English and Russian portions of
the parallel training corpus. A phrase table and hi-
erarchical reordering model was then trained us-
ing the moses training process on both the surface
form and the class factor. Order-5 operation se-
quence models were separately trained on the sur-

face forms and the class factors. An order-6 class-
factor LM (Shen et al., 2006) was also trained on
the English portion of the parallel training data to
supplement the use of BigLM15. NNJMs as out-
lined in §2.7 were used to rescore the n-best lists
from the decode. Following this rescoring, Drem
was employed to tune feature weights, optimizing
expected corpus-level BLEU (Smith and Eisner,
2006). After optimization and decoding of the test
set, remaining unknown words were processed as
described in §2.8.2 and §2.8.4.

System Cased BLEU Uncased BLEU

phrase-based 27.0 28.2
hiero 26.7 27.9
pb-factored 26.4 27.8

Table 3: MT Submission Systems decoding
newstest2015

4 Discussion

Our three submitted systems all scored similarly
against the official test set. Manual examination of
our systems’ output shows that there are significant
differences in sentence structure and content.

4.1 Comparing Submitted Systems for
Similarity

We scored one system output against another (as
reference) with mteval13a.pl in both directions
as BLEU scores are not symmetric. Results are
listed in Table 4. Interestingly, the factored phrase-
based and hierarchical systems were more similar
to each other than to the traditional phrase-based
system. This suggests that the addition of class
factors serves a similar function to the use of hi-
erarchical decoding.

4.2 A Closer Analysis of Performance
between Submission Systems

We now examine two sentences translated with
each of our submission systems and compare them
with the supplied reference translation and a literal
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Test Ref BLEU

PB Hiero 57.18
PBFac Hiero 76.34
Hiero PB 57.09
PBFac PB 60.54
PB PBFac 60.47
Hiero PBFac 70.18

Table 4: Submission system similarity measured
in uncased BLEU

translation. These comparisons are shown in Fig-
ure 1.
In the first sentence, the reference transla-

tion shows a reordering of the first clause to
the end. The phrase-based system drops this
clause. The pb-factored system has informed in-
stead of reported which shifts the meaning; per-
haps the translation was influenced by the fluent
but different-meaning phrase informed the Minis-
ter. The hierarchical system follows the original
order of the source sentence clauses; while miss-
ing the, it reads the best overall.
In the second sentence, Учебный “school” (ad-

jective) is the probable source of school, academic,
and teach. The phrase-based system handles this
word best; the phrase-based factored system gen-
erates academic and teach but separates them; the
hierarchical system generates year to teach. The
hierarchical system does the best job with no ear-
lier than October. The phrase-based factored sys-
tem generates no earlier and October but reorders
them (perhaps influenced by the common phrase,
in October); and the phrase-based system creates
before October, which reverses the meaning. The
phrase-based system would have read best here,
had it not neglected the negative particle.

5 Conclusion

In this paper, we present data preparation and pro-
cessing techniques for our Russian–English sub-
missions to the 2015Workshop onMachine Trans-
lation (WMT15) shared translation task. Our sub-
missions examine three different decoding strate-
gies and the effectiveness of sophisticated han-
dling of unknown words. While scoring similarly,
each system produced markedly different output.

Opinions, interpretations, conclusions and recommenda-
tions are those of the authors and are not necessarily endorsed
by the United States Government. Cleared for public release
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Example 1
source: Об этом сообщил министр образования и науки самопровозглашенной

республики Игорь Костенок
literal: Of this reported minister education and science self-proclaimed republic, Igor
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Kostenok, reported this.
phrase-based: The Minister of Education and Science of the self-declared republic, Igor Kostenok.
pb-factored: This was informed theMinister of Education and Science of the self-declared republic,

Igor Kostenok.
hierarchical: This was announced by Minister of Education and Science of the self-proclaimed

republic Igor Kostenok.
Example 2

source: Учебный год в ДНР начнется не раньше октября.
literal: School year in DNR begins not before October.

reference: The academic school year in the DPR will begin no earlier than October.
phrase-based: The school year in DNR will begin before October.
pb-factored: Academic year in October, teach will begin.
hierarchical: School year to teach will begin no earlier than October.

Figure 1: Comparison of Submission System Translation Output
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