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Challenges of Speech Input

(D Length
c h ar act e r s — longsequences

10x longer
Discretized audio - speech frames
Impacts: Performance Impact:
- Memory - End-to-End model performance varies based on
- Distance between dependencies dataset & size, language pair...

- Training efficiency - Gascaded models perform better in many settings




o Low-Resource Settings

Challenges of Speech Input

> Larger difference in performance between architectures

> End-to-end models do not see enough data to learn variation
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frames

frames

@ Variation in frame values

3@ Variation in number of frames per phone
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This Work

@ End-to-End vs Gascade comparison

> Single dataset with much previous work:
Fisher Spanish-English

» Compare multiple resource settings:
HIGH (160hr) MED (40hr) LOW (20hr)

2 Phone Features to address challenges of speech input

» Compare architectures:
End-to-End  Cascade



CASCADE

Models with Phone Features
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Phone Features

See paper o Q&A for more!

Alignment Quality WERl ASR Supervision

Gold — Gold transcript
~ High | 232 Saleskyetal. (2019)

Med 304  Seq2Seq ASR

Low 35.5 Kaldi HMM/GMM

Mapping between phone quality and the
ASR models used for alignment generation,
with the models’ WER on Fisher Spanish test



Phone Features
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) End-to-End vs GCascaded



End-to-End vs Gascaded Models

“Cascade
BPE targets: +2-41
Beam search: +4-8 1

Multi-reference BLEU (4-Ref)

Kumar et al. (2014)
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HIGH (160hr)

(D Best end-to-end > Best cascade

@ Architecture comparisons lacking
@3 Low-Resource comparisons lacking

W @Best cascade from 2014

7/, Weiss et al. (2017)

MID (40hr) LOW (20hr)
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End-to-End vs Gascaded Models

(D Best end-to-end > Best cascade
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PSA

e Tuning models & parameters matters

» Can change relative conclusions when making model comparisons
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2 Phone Features




@ Models with Phone Features

CASCADE END-TO-END Model 1: Model 2: Model 3:
Phone Cascade Phone End-to-End Phone Segmentation
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@ Models with Phone Features

Model 1:
Phone Cascade
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Multi-reference BLEU (4-Ref)
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Results with Phone Features

Baselines Proposed Baselines Proposed Baselines Proposed

HIGH (160hr) MID (40hr) LOW (20hr)
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D Significant performance improvements
» Improvements of 10.9-22.1 over baseline E2E

7/, Phone Features

' End-to-End



Multi-reference BLEU (4-Ref)

Results with Phone Features

@ Significant performance improvements

o0
Baselines Proposed Baselines Proposed Baselines Proposed @ More data efficient
Phone Cascade
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Multi-reference BLEU (4-Ref)

o0

40

30

20

10

0

Results with Phone Features

@ Significant performance improvements
Proposed Proposed Proposed ® More data efficient

|| @ Benefits of phones remain over SOTA ASR

HIGH (160hr) MID (40hr) LOW (20hr)

7/, Phone Features

S End-to-End
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Details: Zoom-In

15
Model HIGH MID LOW — 10
Baseline End-to-End 118hr 40hr 22hr (D)
Salesky et al. (2019)  41lhr 13hr  10hr X 5
Baseline Cascade 76hr 19hr 12hr .1.
Phone Cascade 57hr 39hr 27hr > 0
Phone End-to-End ~ 42hr 20hr 13hr U_IJ
Hybrid Cascade 47hr  34hr 24hr m -5
. . <]
Training Time 10
-15

139

Baseline End-to-End B Phone End-to-End

Hybrid Cascade

W Salesky et al. (2019)
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(shown relative to best baseline: Baseline Cascade)




Phone Gascade
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Conclusion

* Phone features are very effective, at multiple resource settings!

» Build models with intuitions from phone features

e Performance on high-resource settings # performance on low-resource

» Test models on multiple resource settings

e (Cascades are competitive and often better than current E2E models

» Compare against strong cascaded baselines
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