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ABSTRACT

Speech-to-speech translation combines machine translation
with speech synthesis, introducing evaluation challenges not
present in either task alone. How to automatically evaluate
speech-to-speech translation is an open question which has
not previously been explored. Translating to speech rather
than to text is often motivated by unwritten languages or
languages without standardized orthographies. However, we
show that the previously used automatic metric for this task is
best equipped for standardized high-resource languages only.
In this work, we first evaluate current metrics for speech-
to-speech translation, and second assess how translation to
dialectal variants rather than to standardized languages im-
pacts various evaluation methods.

Index Terms— evaluation, speech synthesis, speech
translation, speech-to-speech, dialects

1. INTRODUCTION

Speech is a more natural modality than text for unwritten
languages [1] and predominantly spoken languages or di-
alects without standardized orthographies, motivating work
on speech-to-speech translation [2, 3, |4} |5 16 [7, [8]. Gen-
erating speech rather than text translations may sometimes
also be desired for commercial translation applications. For
under-resourced speech and language processing tasks, using
machine translation (MT) before synthesis can be beneficial
to take advantage of larger annotated resources in a related
high-resource language.

Evaluating translation combined with speech synthesis
is an open question. Speech synthesis is most commonly
evaluated through costly human judgments in absence of
high-quality automatic metrics; development of direct assess-
ment methods through comparison with reference speech is
ongoing but not yet common [9, [10]. For applications com-
bining translation with synthesis such as speech-to-speech
(S2S) or text-to-speech translation (T2S), previous work has
exclusively transcribed synthesized speech with ASR to eval-
uate with the text-based metric BLEU [8 [11} [12]], in part due
to the absence of datasets with parallel speech. The appropri-
ateness of this evaluation approach has not yet been studied.

While combining ASR with BLEU provides a metric to
enable development of neural speech-to-speech and text-to-
speech translation, it relies on standardized orthographies and
sufficiently high-quality ASR models that introduced errors
will not change system judgements; this is unlikely to be the
case for any but the highest-resource settings. The validity
of this approach, and its appropriateness for and robustness
to other settings, such as dialects or unwritten languages, has
not yet been studied. In this study we address two research
questions:

¢ RQ1: How well do different metrics evaluate the combi-
nation of translation with speech synthesis? (i.e., how well
do they correlate with human judgments)

* RQ2: How appropriate are metrics for target languages
without standardized orthographies? (here, dialects)

We compare human evaluation to reference-based metrics us-
ing reference speech or text. We evaluate translation and
synthesis for High German and two Swiss German dialects.
Our findings suggest BLEU is not appropriate for evaluating
speech-to-speech translation for high-resource languages or
non-standardized dialects, and while character-based metrics
are better, improved metrics are still needed.

2. METRICS

2.1. Human Evaluation: Mean Opinion Score (MOS)

Mean opinion score (MOS) is an aggregate subjective qual-
ity measure, and is the most common metric used to evalu-
ate speech synthesis in the absence of high-quality automatic
metrics. To evaluate MOS, we randomly selected a fixed held-
out set of 20 samples which cover the full character-level vo-
cabulary of each dataset. Each sample is rated for its overall
quality by three native speakers along a 5-point Likert scale,
where higher values are better.

While for TTS, the naturalness of the synthesized voice is
the most salient point to evaluate, when synthesizing transla-
tions, the translation quality is also significant. The intended
meaning may not be understandable due to translation errors
and also pronunciation mistakes, each of which influence our
perception of the other. To attempt to isolate the individual



dimensions of performance for this task, we ask annotators
for subjective measures for three specific categories [13]]:

2.1.1. Adequacy

In this category we asked annotators to evaluate how well the
meaning of the source sentence was conveyed by the synthe-
sized translation. If information was lost, added, or distorted
in some way, this would be assessed here. When translating
to speech, errors in pronunciation may also affect the ability
to understand the meaning of the sentence.

2.1.2. Fluency

To evaluate fluency, we asked annotators to focus on the co-
hesion or flow of the synthesized translation. Errors in, for
example, grammatical correctness or use of unnatural or ar-
chaic word choices would factor here.

2.1.3. Naturalness

For naturalness we asked annotators to focus on the quality of
the synthetic voice and the appropriateness of pronunciation
for the particular language and dialect. This evaluation is de-
signed to be independent of the correctness of the translation;
for example, an incorrectly translated word synthesized with
a natural voice should be rated higher here than a correctly
translated word synthesized unnaturally or artificially.

2.2. Reference Text: ASR Transcription with MT Metrics

Machine translation metrics compare discrete text represen-
tations against references. To evaluate synthesized speech
translations with standard automatic MT metrics, previous
work on neural speech-to-speech translation [8} [11} [12] has
utilized large ASR models trained on hundreds of hours of
external corpora in the target language or commercial tran-
scription services to transcribe synthesized samples for com-
parison against text references. The use of high-quality exter-
nal models is to prevent the introduction of ASR errors which
may impact the downstream MT metric.

Previous work has evaluated using ASR and BLEU only
[[14]] and have experiments with high-resource languages with
standardized orthographies only; however, language dialects
often have non-standardized orthographies which we show
disproportionately affect word-level metrics like BLEU. With
this in mind, we also compare two character-level MT met-
rics. chrF [[15] computes Fl-score of character n-grams,
while character-level BLEU (charBLEU) computes BLEU
on character rather than word sequences. We use SacreBLEU
[16] to calculate both BLEU and chrF scores.

2.3. Reference Speech: Mel-Cepstral Distortion (MCD)

Mel-Cepstral Distortion [9]] is an objective metric for evalu-
ating synthesized speech, given reference audio, which com-
putes the mean distance between two sequences of cepstral
features. To account for differences in phone timing and se-
quence length, dynamic time warping (DTW) [[L7] is used to
align the two sequences. Alternatively, segmental approaches
may synthesize test utterances using ‘gold’ phone durations
from the original speech, such that the audio does not need to
be aligned in time. In this study we use MCD with DTW.

3. EXPERIMENTS

3.1. Data
3.1.1. German.

For our German (DE) audio corpus, we used the German
subset of CSS10 [18]], a collection of single-speaker speech
datasets for each of ten languages. The German data is com-
posed of 16 hours of short audio clips from LibriVox audio-
books [19] with aligned transcripts.

3.1.2. Swiss German.

For our Swiss German corpus we used SwissDial [20], a col-
lection of single speaker recordings across 8 Swiss German
dialects. Each dialect has 2-4 hours of speech with aligned
transcripts and sentence-level text translations to High Ger-
man. This enables us to train both Swiss German synthesis
models and translation models to and from German. In this
study we focus on Berndeutsch (CH-BE) and Ziirichdeutsch
(CH-ZH).

3.2. Audio Format

Audio for all experiments used a sampling rate of 22050kHz
with pre-emphasis of 0.97. Audio spectrograms were com-
puted with Hann window function with frames of size com-
puted every 12.5ms. MCD was computed using 34 Mel-
cepstral coefficients extracted with SPTK [21]].

3.3. Models
3.3.1. Machine Translation

We train Transformer [22] models for machine translation
using FAIRSEQ [23] following recommended hyperparame-
ter settings from previous work [22] for IWSLT’ 14 En-De
settings. We additionally train multilingual many-to-many
models to translate to and from the 8 Swiss German dialects
in SwissDial and High German by prepending language ID
tags to each sentence and force-decoding the first token [24].
Initial experiments showed character-level models were more



appropriate for these language pairs than subwords, so our fi-
nal models use character-level tokenization via SentencePiece
[25)]. We decode with length-normalized beam search with
a beam size of 5, and applied early stopping during train-
ing using validation sets constructed from 10% of the data;
model parameters for evaluation were taken from the check-
point with the best validation set BLEU.

3.3.2. Speech Synthesis

For speech synthesis we compare two different model archi-
tectures. First, we combine Tacotron [26]] and WaveNet [27]]
for a neural ‘end-to-end’ approach. Tacotron is an end-to-end
model which uses a combination of convolutional, fully con-
nected, and recurrent layers to generate (mel) spectrograms
from text. The WaveNet vocoder is then responsible for wave-
form synthesis to generate playable audio. Given the lower-
resource nature of this task, we additionally compare a seg-
mental speech synthesis model as implemented by SlowSoft
[28L 29] to the ‘end-to-end’ approach.

3.3.3. Speech Recognition

To transcribe synthesized samples for evaluation with MT
metrics we compared two commercial systems, Recapp and
Amazon Transcribe, both of which support German and Swiss
Germanﬂ We observed better results with Recapp, which we
use throughout. Note that the limited size of the SwissDial
corpus would be insufficient to train a high-quality ASR sys-
tem for Swiss German, exhibiting a common tradeoff between
domain and dialect specificity on one hand, and better trained
but less suited models on the other.

4. RESULTS

We first show results in on the individual subtasks ma-
chine translation (MT) and speech synthesis (TTS), and pro-
vide context for our particular languages and metrics. We then
present our text-to-speech (T2S) translation results in
where we discuss our two research questions: how well dif-
ferent metrics capture model quality (§ 4.2.T) and whether we
observe differences across dialectal variants (§ 4.2.2)).

4.1. Individual Subtasks
4.1.1. Machine Translation.

We compare machine translation to a high-resource language
(German: DE) and to dialectal variants (Swiss German: CH-
BE and CH-ZH). shows performance on our three
MT metrics: BLEU, character-level BLEU, and chrF. We see
similar performance across all three languages and metrics

'Our experiments suggest Amazon Transcribe’s Swiss German model may
support German as spoken in Switzerland, rather than Swiss German.

CH—DE DE—CH-BE DE—CH-ZH

Text (1) chrF 0.8 0.8 0.8

Text (1) charBLEU 81.2 82.5 82.7

Text (1) BLEU 45.3 40.2 44.5
Table 1: Machine translation (MT): automatic evaluation

metrics for text-to-text baselines.

for machine translation in isolation. We note SwissDial tran-
scripts were produced by one annotator per dialect: for this
reason, dialectal spelling and orthography is more consistent
than is typical across speakers and datasets for Swiss German,
a common challenge when evaluating dialectal models.

4.1.2. Speech Synthesis.

We evaluate our TTS models with the same metrics for T2S
models to compare the effects of combination with ma-
chine translation. [Table 2] shows our neural TTS models
evaluated with human judgments (MOS), speech-reference
metrics (MCD), and text-reference metrics (ASR-chrF, ASR-
charBLEU, ASR-BLEU). The SwissDial dataset does not
have reference speech for High German, only text, so we
cannot compute MCD for DE.

Human judgments for all categories are shown in
We see proportionally higher ratings for fluency with
the neural models than the segmental models, a well-known
phenomena [30]. The segmental model performed most sim-
ilarly to the neural model in adequacy, the category which
synthesis errors are least likely to affect. The neural synthesis
model was consistently significantly better than the segmen-
tal, despite less training data, and so we conduct our analysis
on our neural models.

TTS models for both dialects exhibit similar trends across
MOS categories, with consistently slightly higher average
judgments for CH-ZH, approaching those of DE. Better per-
formance on CH-ZH may reflect the slightly closer rela-
tionship between Ziirichdeutsch (CH-ZH) and High German
(DE); concretely, this relationship may enable better transfer
through pretraining on High German.

shows similar MCD scores for both dialects, de-
spite higher MOS for CH-ZH. Computing 95% confidence
intervals through bootstrap resampling [31] shows that MCD
scores on CH-ZH are slightly more stable than CH-BE.

Text-based metrics depend on ASR transcription to apply.
German is an ideal case for these metrics: it is a standardized
high-resource language, and the ASR model used is of com-
mercial quality. As such, we treat it as an upper bound for
these metrics. For German, the synthesis and ASR roundtrip
yields near—perfecﬂ character-level metrics (chrF and char-
BLEU), while occasional errors in synthesis or transcription
more greatly affect word-level BLEU.

2Tt has been shown [32]] that ASR applied to synthesized speech has higher
performance than on natural speech.
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Fig. 1: MOS: Speech Synthesis.
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Fig. 2: MOS: Translation with Synthesis.

DE CH-BE CH-ZH

Human (1) MOS 38+0.1 33+026 3.7-+0.26
Speech (|) MCD —  61+042 6.1£035
Text (1)  ASR-chrF 0.9 0.4 0.5
Text (1)  ASR-charBLEU — 94.9 50.3 582
Text (1)  ASR-BLEU 75.2 1.4 3.6

CH—DE DE—CH-BE DE—CH-ZH

Human (1) MOS 384015 32+031 33+029
Speech (1) MCD — 63+£045 624034
Text (1)  ASR-chrF 0.7 0.4 0.5
Text (1)  ASR-charBLEU  78.1 46.5 55.8
Text (1)  ASR-BLEU 415 0.9 3.7

Table 2: Speech synthesis (TTS): evaluation metrics for
speech synthesis baselines.

The text-reference metrics show a greater difference be-
tween both dialects and between the dialects and High Ger-
man than either MOS or MCD do. The question we address
in this work is whether the differences shown by some metrics
reflect better sensitivity to model differences we care about,
or, if those metrics are less appropriate for this task. Lower
text-reference scores for dialects scores in part reflect slightly
lower-quality synthesis models (seen in lower average MOS
scores than DE); however, while the character-level metrics
chrF and charBLEU are weakly correlated with MOS judg-
ments for the two dialects, BLEU itself is not (see[Figure 6)).
BLEU scores decrease from 75.2 for DE to 1.4 and 3.6 for
CH-BE and CH-ZH—which do not reflect the similar human
judgments for adequacy across all three language variants.

While we use commercial ASR systems for Swiss Ger-
man, one of which has been developed specifically for Swiss
dialects (Recapp), there is no standardized spelling or ortho-
graphic convention for Swiss German [33]. For example, in
our dataset, Scheintiiren may be written as Schiitiire, Schi-
intiitird, Schiporte, among others. Due to this, the ASR step
to apply text-reference metrics introduces a model which has
likely been trained on different spelling conventions than in
the SwissDial dataset, and can cause greater divergence from
text references. We discuss this issue further in

4.2. Translation with Synthesis

Human judgments for the text-to-speech translation with syn-
thesis task (T2S) across all categories are shown in
and scores for all metrics are shown in[Table 3] Our analy—
sis is primarily conducted using the neural synthesis models.
Correlations between metrics and human judgments can be

found in

Table 3: Translation and synthesis (T2S): evaluation metrics
for combined text-to-speech models.

We expect to see differences from the individual tasks
when combining translation with synthesis. Interestingly,
though, human judgments suggest the combination with ma-
chine translation does not significantly impact overall syn-
thesis quality (Figure 3). When compared to synthesis alone
we see only small degradations across MOS cat-
egories between TTS and T2S, with more similar results for
both dialects. The category most affected by the introduction
of translation is adequacy, which assesses how well the in-
tended meaning was conveyed, where MT is most likely to
introduce impactful errors. Fluency assesses the coherence
of the language, and naturalness the quality of the voice and
appropriateness of pronunciation. Both categories may be af-
fected by character substitutions introduced by MT which do
not fit the phonotactics of the language, and so more greatly
affect synthesis than e.g., rare sequences.

Below we assess the ability of the automatic metrics to
capture human-perceptible differences in quality for high-
resource languages and dialectal variants.

4.2.1. RQI: Do metrics capture human quality judgments?

Character-level metrics (chrF, charBLEU) have stronger
correlations with human judgments than BLEU. The text-
reference metrics show the biggest degradation between TTS
and T2S. As shown in |Figure 4| and [Figure 5| ASR-chrF
has stronger correlations with overall human judgments for
all languages than ASR-BLEU. We also find correlations of
r=0.98 between chrF and charBLEU after ASR, with slightly
higher correlations with MOS for chrF, suggesting character-
level metrics are more robust to the synthesis-ASR roundtrip.
These metrics also reflect more specifically targeted MOS
adequacy ratings, which were highly correlated with overall
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Fig. 4: MOS overall—ASR-chrF.

Fig. 5: MOS overall—ASR-BLEU.

Correlations with Human Judgments (MOS).

ratings. BLEU had only weak correlations with human judg-
ments (overall and adequacy: r=0.1-0.2). This reflects that
sentences which had large variation in BLEU scores received
similar (high) human judgments. This follows comparisons
in [15], where chrF had higher correlations than its word-
based equivalent for segments with higher human ratings. We
discuss language-specific metric effects in[§ 4.2.2]

MCD reflects naturalness, which text-based metrics
cannot directly assess. By transcribing synthesized speech
to text, we lose the ability to assess key speech-specific char-
acteristics such as naturalness. MCD directly compares syn-
thesized to reference speech, and moderately reflects natural-
ness (correlations for neural models in[Figure ); correlations
are negative as these metrics have inverted scales. Reference-
text metrics can assess naturalness only implicitly. While
character-based metrics in particular also correlate moder-
ately, this instead reflects other confounding factors. When
we compare the segmental and neural synthesis models, the
ranges of the human naturalness judgments are completely
disjoint, as are the MCD scores’; however, the reference-text
metrics are unable to discriminate between the models.

Character-level metrics have stronger correlations
with MCD. MT models with better character-level perfor-
mance have better MCD scores. Character-level metrics for
MT correlate moderately with MCDJ: we see Pearson’s
r=-0.43 (chrF7) and r=-0.48 (charBLEUY); negative corre-
lations are expected given the polarity of the metrics. As an
edit distance metric which uses DTW to match segments of
approximately phones, which are more similar in granular-
ity to characters than words, this finding is unsurprising but
encouraging for the use of implicit character-level metrics if
only text rather than speech references are available.

4.2.2. RQ2: Are metrics equally able to evaluate dialects?

[Table 3| shows that some metrics exhibit greater differences
between TTS and T2S than others. In some cases, this may
reflect useful and complementary information: for example,
that sample adequacy has been more affected by translation.
However, for many metrics, we find utility to be language-
dependent.

Character-level metrics are more robust to dialectal
targets. Most metrics do not reflect human judgments for di-
alects. [Figure 7] and [Figure 8| show correlations between MT
metrics applied before and after synthesis (and ASR). While
both BLEU and chrF are strongly correlated (r>0.8) between
both conditions for DE, there is a stark contrast for the di-
alects. Where chrF shows moderate correlations, BLEU ex-
hibits weak-to-negative correlations for both dialects. Given
that human judgments remain correlated with and without
translation, this suggests a failure of the metrics to appropri-
ately reflect the differences between models.

ASR disproportionately affects metrics for dialects.
Few dialects have standardized spelling conventions; one
technique to train models for dialects is to create a normal-
ized representation [34} [33]] to remove such variation, which
has been created for these ASR models, or even to ‘transcribe’
to a standardized variant such as High German [35]. In many
cases, this is less transcription than translation, as there can
also be variation in word order and grammar in addition to
pronunciation between language variants. Further, many di-
alects do not have normalization standards, so normalized
forms may have been created on an individual level and so
still differ between models and corpora. While normalization
may improve model performance for some tasks, then, it also
creates a diglossia where the text may not reflect the speech,
which may degrade others (like evaluation metrics).
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Fig. 6: Pearson’s r correlations.

Fig. 7: chrF—ASR-chrF.

Fig. 8: BLEU—ASR-BLEU.

Correlations of text-based metrics before synthesis, and after synthesis and transcription (ASR).

The use of ASR for evaluation can introduce a model
which has been trained on different spelling and orthographic
conventions than the translation and synthesis models to be
evaluated. This means that ASR will yield different spelling
standards than the reference text, artificially reducing text-
metric scores. Our test sets are parallel between all languages,
which enables us to assess this effect quantitatively; using
BLEU as a distance metric between the two dialects, there are
~2x higher scores between CH-ZH and CH-BE after ASR
(23.6) than between the reference texts (12.7), due to normal-
izing effects from ASR. Past work on ASR [36| 133]] has ex-
plored WER-variants where words with the same normalized
form are deemed correct. In place of a normalization dictio-
nary [37] or morphological analyzer, given vocabulary mis-
matches, we train WEFST grapheme-to-phoneme models [34]]
using Phonetisaurus [38] to map transcripts and references to
a ‘normalized’ phonetic form. When subsequently applying
text metrics to phonetic forms, we see improvements of 10-
20% in reference-text metrics for both dialects. However, the
discrepancy between German and the dialects remains for all
metrics, and this step introduces one more intermediate model
before evaluation.

ASR can introduce errors but also corrections. High-
performance ASR models are integrated with MT metrics in
order to reduce errors potentially introduced by the transcrip-
tion needed to evaluate with reference-text metrics. However,
we find large language models and well-trained decoders can
also correct errors in speech synthesis, biasing the evaluation
of the synthesized speech to appear better. These corrections
can range from small errors in pronunciation by the synthe-
sis model where the correct transcript is recovered by ASR
beam search Pronunciation), to reorderings in the
ASR transcript from the word order present in the synthesized

speech Ordering).

Ordering Pronunciation
Ref miiessi verarbeita dri  konferenze
T2S  verarbeiten miisse drii  konfarenz
ASR miiessi verarbeita drii konferenze

Fig. 9: Selected corrections introduced by ASR.
5. CONCLUSION

We evaluated the current metrics for translation with synthe-
sis, and how translation to dialectal variants rather than to
standardized languages impacts various evaluation methods.
We found that many available metrics do not represent trans-
lation performance well: specifically, word-based text met-
rics (BLEU) and the speech metric MCD misrepresent text-
to-speech performance for dialects and do not correlate well
with human judgments. The character-based text MT metrics
chrF and character-level BLEU are more robust to dialectal
variation and transcription quality in evaluation, but corre-
lations with human judgments remain moderate. Character-
based MT metrics correlate better with human judgments than
BLEU or MCD for our high-resource language, suggesting
they may be the best currently available metrics for speech-to-
speech translation and related tasks, but our findings suggest
better metrics are still needed.

Acknowledgments. This project is supported by Ringier, TX Group, NZZ,
SRG, VSM, Viscom, and the ETH Ziirich Foundation. We would also like
to thank our annotators; Chan Young Park for assistance with our annotation
interface; and Matt Post, Nathaniel Weir, and Carlos Aguirre for feedback.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

6. REFERENCES

Steven Hillis, Anushree Prasanna Kumar, and Alan W
Black, “Unsupervised phonetic and word level discov-
ery for speech to speech translation for unwritten lan-
guages,” in INTERSPEECH, 2019, pp. 1138-1142.

Alex Waibel, “Interactive translation of conversational
speech,” Computer, vol. 29, no. 7, pp. 41-48, 1996.

Enrique Vidal, “Finite-state speech-to-speech transla-
tion,” in 1997 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. IEEE, 1997, vol. 1,
pp- 111-114.

Laurent Besacier, Hervé Blanchon, Yannick Fouquet,
Jean-Philippe Guilbaud, Stéphane Helme, Sylviane
Mazenot, Daniel Moraru, and Dominique Vaufreydaz,
“Speech translation for French in the Nespole! Euro-
pean project,” in Eurospeech’01, 2001, pp. pp—1291.

Florian Metze, John McDonough, Hagen Soltau, Alex
Waibel, Alon Lavie, Susanne Burger, Chad Langley,
Lori Levin, Tanja Schultz, Fabio Pianesi, et al., “The
NESPOLE! Speech to Speech Translation System,” in
Human Language Technologies 2002, 2002, pp. 6—

pages.

Satoshi Nakamura, Konstantin Markov, Hiromi
Nakaiwa, Gen-ichiro Kikui, Hisashi Kawai, Takatoshi
Jitsuhiro, J-S Zhang, Hirofumi Yamamoto, Eiichiro
Sumita, and Seiichi Yamamoto, “The atr multilingual
speech-to-speech translation system,” [EEE Transac-
tions on Audio, Speech, and Language Processing, vol.

14, no. 2, pp. 365-376, 2006.

Wolfgang Wahlster, Verbmobil: foundations of speech-
to-speech translation, Springer Science & Business Me-
dia, 2013.

Y. Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey,
M. Johnson, Z. Chen, and Yonghui Wu, “Di-
rect speech-to-speech translation with a sequence-to-
sequence model,” in INTERSPEECH, 2019.

John Kominek, Tanja Schultz, and Alan W Black, “Syn-
thesizer voice quality of new languages calibrated with
mean mel cepstral distortion,” in Spoken Languages
Technologies for Under-Resourced Languages, 2008.

Ron J Weiss, RJ Skerry-Ryan, Eric Battenberg, Soroosh
Mariooryad, and Diederik P Kingma, ‘“Wave-tacotron:
Spectrogram-free end-to-end text-to-speech synthesis,”
arXiv preprint arXiv:2011.03568, 2020.

Chen Zhang, Xu Tan, Yi Ren, Tao Qin, Kejun Zhang,
and Tie-Yan Liu, “UWSpeech: Speech to Speech
Translation for Unwritten Languages,” arXiv preprint
arXiv:2006.07926, 2020.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
(20]

(21]

(22]

(23]

[24]

T. Kano, S. Sakti, and S. Nakamura, “Transformer-
based direct speech-to-speech translation with
transcoder,” in 2021 IEEE Spoken Language Technol-
ogy Workshop (SLT), 2021, pp. 958-965.

Kei Hashimoto, Junichi Yamagishi, William Byrne, Si-
mon King, and Keiichi Tokuda, “Impacts of machine
translation and speech synthesis on speech-to-speech
translation,” Speech Communication, vol. 54, no. 7, pp.
857-866, 2012.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu, “BLEU: A method for automatic evaluation of
machine translation,” in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics,
2002, pp. 311-318.

Maja Popovié, “chrF: character n-gram F-score for au-
tomatic MT evaluation,” in Proceedings of the Tenth
Workshop on Statistical Machine Translation, Lisbon,
Portugal, Sept. 2015, pp. 392-395, Association for
Computational Linguistics.

Matt Post, “A call for clarity in reporting BLEU scores,”
in Proceedings of the Third Conference on Machine
Translation: Research Papers, Oct. 2018, pp. 186-191.

Meinard Miiller, “Dynamic time warping,” Information
retrieval for music and motion, pp. 69-84, 2007.

Kyubyong Park and Thomas Mulc, “Css10: A collec-
tion of single speaker speech datasets for 10 languages,”
Interspeech, 2019.

“LibriVox,” https://librivox.orqg/, 2018.

Pelin Dogan-Schonberger, Julian Miader, and Thomas
Hofmann, “SwissDial: Parallel Multidialectal Corpus
of Spoken Swiss German,” 2021.

“SPTK,”
2017.

http://sp-tk.sourceforge.net/,

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems
30, 2017, pp. 5998-6008.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,”  in Proceedings of NAACL-HLT 2019:
Demonstrations, 2019, pp. 48-53.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel, “To-
ward multilingual neural machine translation with uni-
versal encoder and decoder,” Proceedings of IWSLT,
2016.


https://librivox.org/
http://sp-tk.sourceforge.net/

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Taku Kudo and John Richardson, “SentencePiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing,” in Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations,
Brussels, Belgium, Nov. 2018, pp. 66-71, Association
for Computational Linguistics.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, et al.,
“Natural TTS Synthesis by Conditioning WaveNet on
Mel Spectrogram Predictions,” ICASSP, 2018.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv
preprint arXiv:1609.03499, 2016.

Christof Traber, Schamai Safra, Bleicke Holm, Dominic
Schnyder, and Philipp Lichtenberg, “Text-to-Speech
(TTS) for Seven Swiss German Dialects,” SwissText, 6
2019.

Christof Traber, Schamai Safra, Bleicke Holm, Dominic
Schnyder, and Philipp Lichtenberg, ‘Text-to-Speech
(TTS) for Seven Swiss German Dialects,” SwissText, 6
2020.

Philipp Koehn and Rebecca Knowles, “Six challenges
for neural machine translation,” Proceedings of the First
Workshop on Neural Machine Translation, 2017.

Bradley Efron and Robert J Tibshirani, An introduction
to the bootstrap, CRC press, 1994.

A. Rosenberg, Y. Zhang, B. Ramabhadran, Y. Jia,
P. Moreno, Y. Wu, and Z. Wu, “Speech recognition with
augmented synthesized speech,” in 2019 IEEE Auto-
matic Speech Recognition and Understanding Workshop
(ASRU), 2019, pp. 996-1002.

[uliia Nigmatulina, Tannon Kew, and Tanja Samardzic,
“ASR for Non-standardised Languages with Dialectal
Variation: the case of Swiss German,” in Proceedings
of the 7th Workshop on NLP for Similar Languages, Va-
rieties and Dialects, 2020, pp. 15-24.

Larissa Schmidt, Lucy Linder, Sandra Djambazovska,
Alexandros Lazaridis, Tanja SamardZi¢, and Claudiu
Musat, “A Swiss German dictionary: Variation in
speech and writing,” in Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, Marseille,
France, May 2020, pp. 2720-2725, European Language
Resources Association.

(35]

[36]

(37]

(38]

M. Stadtschnitzer and C. Schmidt, ‘“Data-driven pro-
nunciation modeling of swiss german dialectal speech
for automatic speech recognition,” in LREC, 2018.

Ahmed Ali, Salam Khalifa, and Nizar Habash, “To-
wards Variability Resistant Dialectal Speech Evalua-
tion,” in INTERSPEECH, 2019, pp. 336-340.

Tanja Samardzi¢, Yves Scherrer, and Elvira Glaser,
“ArchiMob - a corpus of spoken Swiss German,” in
Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), Por-
toroz, Slovenia, May 2016, pp. 4061-4066, European
Language Resources Association (ELRA).

Josef Robert Novak, Nobuaki Minematsu, and Kei-
kichi Hirose, “Phonetisaurus: Exploring grapheme-to-
phoneme conversion with joint n-gram models in the
WEST framework,” Natural Language Engineering,
vol. 22, no. 6, pp. 907-938, 2016.



	 Introduction
	 Metrics
	 Human Evaluation: Mean Opinion Score (MOS)
	 Adequacy
	 Fluency
	 Naturalness

	 Reference Text: ASR Transcription with MT Metrics
	 Reference Speech: Mel-Cepstral Distortion (MCD)

	 Experiments
	 Data
	 German.
	 Swiss German.

	 Audio Format
	 Models
	 Machine Translation
	 Speech Synthesis
	 Speech Recognition


	 Results
	 Individual Subtasks
	 Machine Translation.
	 Speech Synthesis.

	 Translation with Synthesis
	 RQ1: Do metrics capture human quality judgments?
	 RQ2: Are metrics equally able to evaluate dialects?


	 Conclusion
	 References

