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Training Data

* The SIGMORPHON 2019 Task 2 requires us to produce the lemma and morpho-syntactic description of each « We model feature-wise prediction for each coarse-grained

token in a sequence, for 107 treebanks. feature F={POS, Gender, ...} and transform the dataset from
UniMorph schema to key-value format. Therefore, we get:

* However, most treebanks are under-resourced, making it challenging to train deep neural models for them N:PLLFEM =  POS=N;Number=PL:Gender=FEM

* We approach this task with a hierarchical neural conditional random field (CRF) model which predicts each
coarse-grained feature (eg. POS, Case, etc.) independently.

* We augment training data using language clusters based on
typographical and orthographic similarity, as shown below:

* To tackle the challenge of data-scarcity we propose a multi-lingual transfer training regime where we transfer Language Family Clusters with Data Size
from multiple related languages that share similar typology and/or orthography. armenian | 2z
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feature F such as Number, Person etc. POS embeddings are concatenated to the word and char-level representationse. Nirbar B6F CERtEneEas

This model has [F[-1 decoders since POS tagger is run separately as a prior step.
MDCRF refers to the above model without POS embeddings having all [F/ decoders.

Results Q. Why does adding POS help?

e Our system achieves an average improvement of +15.30 (accuracy) e Removing POS gives a drop in accuracy which is significant for low-medium
and +4.93 (F1) over the provided baseline. (McCarthy et al., 2019). resource languages: Maratih (-6.12 acc), Ukrainian (-3.57 acc).
e We compare our model for bi-lingual transfer with previous bsselines: e Number of errors per feature F: POS helped reduced Gender errors in Marathi

<
MDCRF m MDCRF+POS -

Language Model | tgt-size=100 tgt-size=1,000

(Malaviya et al., 2018) 46.89 64.75 64.46 67.56 82.06 82.11
(Cotterell and Heigold, 2017) 52.76 58.23 58.41 71.90 77.89 77.97

MDCRF + POS + MULTI-SOURCE 57.32 80.11 78.86 70.24 85.44 84.86
(Malaviya et al., 2018) 4541 68.63 68.07 63.93 85.06 84.12 v w
(Cotterell and Heigold, 2017) 51.74 68.15 66.82 61.8 75.96 76.16 "~ 0
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| Accuracy | F1-Macro | F1-Micro | Accuracy | F1-Macro | Fl1-Micro ~ ~ . 5 s
RU/BG MDCRF + POS + MULTI-SOURCE 69.13 85.78 85.86 82.72 92.15 92.17
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POLARITY MOOD POS VERBFORM TENSE CASE GENDER PERSON NUMBER FINITENESS ASPECT

MDCRF 4 4 348 16 14 121 198 91 243 65 49
MDCRF+POS 3 6 348 17 16 121 197 106 248 78 63

Q. What is the model learning? | | |
" ovel _ £ th ocically diff I | Eg. For some Word§ gender may be inferred from inflectional form, but for others
¢ Character-level attention maps for three typologically different languages: such as (TPHAN.FEM.SG.ACC) the traditional female suffix

IS not present, in which casen having the POS information helps.

INDONESIAN MARATHI BELARUSIAN

e b el e rr = o A aunanway = suinapak v o Q. Does time-depth matter for transfer learning?

‘district office’ NOM distiict head NOM scargarif  seroark i MASEEE by ERG of occassions’ occassion.MASC.N.INAN GEN.PL

Time-depth is period of time that has elapsed since all languages in the group
were a single language.
We study the following clusters: Indo-Aryan, Slavic and Semitic.

e Transfer helps most for Slavic
(+2.9 accuracy), and next for
Indo-Aryan cluster (+0.32
accuracy). There is a negative
effect for the Semitic cluster
(-0.0176 accuracy).

Indo-Aryan and Slavic have
shallower time-depths:
< 1000 years = better transfer!

e Marathi and Belarusian display morphological inflections as suffix.
® Indonesian displays inflections in the form of prefix, suffix and circumfix.

Absolute gain

Code: https:/Igithub.com/Aditi138/MorphologicalAnalysis
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