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Abstract

While there exist scores of natural languages,
each with its unique features and idiosyn-
crasies, they all share a unifying theme:
enabling human communication. We may
thus reasonably predict that human cognition
shapes how these languages evolve and are
used. Assuming that the capacity to process
information is roughly constant across human
populations, we expect a surprisal–duration
trade-off to arise both across and within lan-
guages. We analyse this trade-off using a cor-
pus of 600 languages and, after controlling
for several potential confounds, we find strong
supporting evidence in both settings. Specifi-
cally, we find that, on average, phones are pro-
duced faster in languages where they are less
surprising, and vice versa. Further, we confirm
that more surprising phones are longer, on av-
erage, in 319 languages out of the 600. We
thus conclude that there is strong evidence of a
surprisal–duration trade-off in operation, both
across and within the world’s languages.

1 Introduction

During the course of human evolution, countless
languages have evolved, each with unique features.
Despite their stark differences, however, it is
plausible that shared attributes in human cognition
may have placed constraints on how each language
is implemented. These constraints, in turn, may
lead to compensations and trade-offs in the world’s
languages. For instance, if we assume a channel
capacity (Shannon, 1948) in human’s ability to
process language (as posited by Frank and Jaeger,
2008), we may make predictions about these
trade-offs. Additionally, if we assume this capacity
to be uniform across human populations, these
trade-offs will extend cross-linguistically.

Within languages, there is a direct connection
between this channel capacity assumption and
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Figure 1: Surprisal–duration trade-off slopes. The y-
axis presents a multiplicative effect, duration is multi-
plied by y per bit of information. Sorted dots represent
languages in Unitran; ‘+’ are languages in Epitran.

the uniform information density hypothesis (UID;
Fenk and Fenk, 1980; Aylett and Turk, 2004; Levy
and Jaeger, 2007), which predicts that speakers
smooth the information rate in a linguistic signal
so as to keep it roughly constant; by smoothing
their information rate, natural languages can
stay close to a (hypothetical) channel capacity.
Across languages, a unified channel capacity
allows us to derive a specific instantiation of the
compensation hypothesis (Hockett, 1958), with
information density (measured in, e.g., bits per
phone) being compensated by utterance speed (in,
e.g., milliseconds per phone). We may thus predict
a trade-off between surprisal1 and duration both
within and across the world’s languages.

This trade-off has been studied amply within
high resource languages (Genzel and Charniak,
2002; Bell et al., 2003; Mahowald et al., 2018,
inter alia). Cross-linguistically, however, this
trade-off has received comparatively little attention,
with a few notable exceptions such as Pellegrino

1Surprisal is defined as the negative log-probability of an
event, e.g. observing a phone given its prior context.
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et al. (2011) and Coupé et al. (2019). Several
factors have inhibited cross-linguistic studies of
this kind. Arguably, the most prominent is the
sheer lack of data necessary to investigate the
phenomenon. While massively cross-linguistic
data abounds in the form of wordlists (Wichmann
et al., 2020; Dellert et al., 2020), surprisal is a
context-dependent measure and, therefore, isolated
word types are not enough for this analysis.
Further, as we have a speci�c hypothesis for why
this trade-off should arise (humans' information
processing capacity), we are not interested in
simply �nding anycorrelation between surprisal
and duration. Several confounds could drive
such a correlation, but most of these are either
trivially true or uninteresting from our perspective.
Therefore, a thorough analysis of this trade-off
needs to control for these potential confounds.

In this work, we investigate the surprisal–
duration trade-off by analysing a massively
multi-lingual dataset of more than 600 languages
(Salesky et al., 2020). We present an experimental
framework, controlling for several possible
confounds, and evaluate the surprisal–duration
trade-off at the phone level. We �nd evidence
of a trade-off across languages: languages with
more surprising phones compensate by making
utterances longer. We also con�rm mono-lingual
trade-offs in 319 languages, out of 600;2 within
these languages, more surprising phones are
pronounced with a signi�cantly longer duration.
This is the most representative evidence of the
uniform information density hypothesis to date.
Moreover, we did not �nd evidence of a single
language where the opposite effect is in operation
(i.e. where more informative phones are shorter).
Given these collective results, we conclude there is
strong evidence for a surprisal–duration trade-off
both across and within the world's languages.

2 Surprisal and Duration

Cross-linguistic comparisons of information rate
go back at least 50 years. In a study comparing
phonemes per second, Osser and Peng (1964)
found no statistical difference between the speech
rate of English and Japanese native speakers. In
a similar study, den Os (1985, 1988) compared
Dutch and Italian and found no difference in terms

2The original number of languages was 635, but after re-
moving those with quality issues, we end up with 600. This
process is explained in §4.

of syllables per second, although Italian was found
to be somewhat slower in phones per second. Such
cross-linguistic comparisons, however, are not
straightforward, since the range of speech rate can
vary widely within a single language, depending
on sentence length (Fonagy and Magdics, 1960)
and type of speech (e.g. storytelling vs interview;
Kowal et al., 1983). In a meta-analysis of these
studies, Roach (1998) concludes that carefully
assembled speech databases would be necessary
to answer this question. In this line, Pellegrino
et al. (2011) recently analysed the speech rate of 8
languages using a semantically controlled corpus.
They found strong evidence towards non-uniform
speech rates across these languages.

This result is not surprising, however, given that
natural languages vary widely in their phonology,
morphology, and syntax. Despite these differences,
researchers have hypothesised that there exist com-
pensatory relationships between the complexity of
these components (Hockett, 1958; Martinet, 1955).
For instance, a larger phonemic diversity could be
compensated by shorter words (Moran and Blasi,
2014; Pimentel et al., 2020) or a larger number of
irregular in�ected forms could lead to less complex
morphological paradigms (Cotterell et al., 2019).
Such a compensation can be thus seen as a type of
balance, where languages compromise reliability
versus effort in communication (Zipf, 1949; Mar-
tinet, 1962). One natural avenue for creating this
balance would be a language's information rate.
If this were kept roughly constant, the needs of
both speakers (who prefer shorter utterances) and
listeners (who value easier comprehension) could
be accommodated. Speech rate would then be
compensated by information density, resulting in a
form of surprisal–duration trade-off. Indeed, Pelle-
grino et al. (2011) and Coupé et al. (2019) present
initial evidence of this trade-off across languages.

Analogously, the UID hypothesis posits that,
within a language, users balance the amount of
information per linguistic unit with the duration
of its utterance. This hypothesis has been used to
explain a range of experimental data in psycholin-
guistics, including syntactic reduction (Levy and
Jaeger, 2007) and contractions, such asarevs 're
(Frank and Jaeger, 2008). While this theory is
somewhat under-speci�ed with respect to its causal
mechanisms, as we argue in Meister et al. (2021),
one of its typical interpretations is that users are
maximising a communicative channel's capacity



(Frank and Jaeger, 2008; Piantadosi et al., 2011).
If we assume this channel's capacity to be constant
across languages, we may derive a cross-linguistic
version of UID. Such a hypothesis would predict,
for instance, that speakers of languages with less
informative phones will make them faster. Under
this speci�c interpretation, our study can be seen as
evidence of UID as a cross-linguistic phenomenon.

3 Measuring Surprisal

To formalise our approach, we �rst present a stan-
dard measure of information content:surprisal.
In the context of natural language, surprisal (Hale,
2001) measures the Shannon information content
a linguistic unit conveys in context, which can be
measured as its negative log-probability:

H(St = st j S<t = s<t ) = � logp(st j s<t )
(1)

In this equation,S is a sentence-level random
variable, with instancess 2 S � , andt indexes a
position in the sentence. Accordingly, we de�ne
S as the set of phones in a given phonetic alphabet,
and we uses<t to indicate the context in which
phonest appears.

Unfortunately, this surprisal is not readily
available, since we would need access to the true
distributionp(st j s<t ) to compute it. We will
use an approximationp� (st j s<t ) instead, i.e. a
phone-level model with estimated parameters� .

3.1 Approximating p(st j s<t ).

While much of the original psycholinguistic work
on surprisal estimatedp� using n-gram models
(Levy and Jaeger, 2007; Coupé et al., 2019,in-
ter alia), recent work has shown that a language
model's psychometric predictive power correlates
directly with its quality, measured by its cross-
entropy in held-out data (Goodkind and Bicknell,
2018; Wilcox et al., 2020). We will thus make use
of LSTMs in this work, since they have been shown
to outperformn-grams on phone-level language
modelling tasks (Pimentel et al., 2020). We �rst en-
code each phonest into a high-dimensional lookup
embeddinget 2 Rd1 , whered1 is its embedding
size. We then process these embeddings using an
LSTM (Hochreiter and Schmidhuber, 1997), which
outputs contextualised hidden state vectors:

h t = LSTM( h t � 1; et � 1) 2 Rd2 (2)

where the initial hidden stateh0 is the zero vector
and the initial phones0 is a start-of-sentence sym-

bol. The hidden states are then linearly transformed
and projected onto� jSj+1 , the probability simplex,
via a softmax to compute the desired distribution:3

p� (st j s<t ) = softmax( Wh t + b) (3)

whereW 2 R (jSj+1) � d2 andb 2 R (jSj+1) are
learnable parameters. We optimise the parameters
by minimising our model's cross-entropy with a
training set, which corresponds to minimising the
following objective

H� (St j S<t ) = �
NX

n=1

js( n ) jX

t=1

logp� (s(n)
t j s(n)

<t )

(4)
where we assumef s(n)gN

n=1 are sampled from the
true distributionp(�).

To avoid over�tting to this training set, we
then estimate the cross-entropy with a validation
setf bs(m)gM

m=1 , where we stop training once this
validation cross-entropy stops decreasing. Note
that minimising the cross-entropy is equivalent
to minimising the Kullback–Leibler divergence
between two distributions. Further, if we have
access to a larger number of samplesM , we
assume this cross-entropy estimate will give us a
tight approximation to the cross-entropy between
p� and the true distribution. Thus, the lower this
cross-entropy, the closer we may assume our
model is to the truep(�), and the better we should
expect our surprisal estimates to be.

Hyper-parameter choices. We implement our
phone-level LSTM language models with two hid-
den layers, an embedding size of 64 and a hidden
size of 128. We further use a dropout of0:5 and
a batch size of 64. We train our phone-level LSTM
models using AdamW (Loshchilov and Hutter,
2019) with its default hyper-parameters in PyTorch
(Paszke et al., 2019). We evaluate our models
on a validation set every 100 batches, stopping
training when we see no improvement for �ve
consecutive evaluations. We split each language's
data (described in §4) into train-dev-test sets using
an 80-10-10 split, using sentences as our delimiters.
We thus do not separate phone data points from
the same sentence. We use the �rst two splits to
train and validate our models, while the test set is
held out and used throughout our analysis.

3The dimension of the probability simplex isjSj + 1 to
account for an end-of-sentence symbol.



4 Data

We use the VoxClamantis dataset for our analy-
sis (Salesky et al., 2020). This dataset is derived
from spoken readings of the Bible4 and spans more
than 600 languages from 70 language families, as
shown in Fig. 2.5 This dataset offers us a semanti-
cally controlled setting for our experiments, as it is
composed of translations of a single text, the Bible.

This dataset contains automatically generated
phone alignments and derived phonetic measures
for all its languages (with both phone duration, and
vowels' �rst and second formant frequencies). On
average, there are approximately 9,000 utterances
(or 20 hours of speech) per language, making it
the largest dataset of its kind. Phone labels were
generated using grapheme-to-phoneme (G2P)
tools and time aligned using either multilingual
acoustic models (Wiesner et al., 2019; Povey et al.,
2011) or language-speci�c acoustic models (Black,
2019; Anumanchipalli et al., 2011). VoxClamantis
offers its phonetic measurements under three G2P
models, which trade-off language coverage and
quality. We will focus on two:6

• Epitran (Mortensen et al., 2018).This is a
collection of high quality G2P models based
on language-speci�c rules. Phonetic measure-
ments produced with Epitran are available for
a collection of 39 doculects7 from 29 lan-
guages (as de�ned by ISO codes) in 8 lan-
guage families.

• Unitran (Qian et al., 2010). This is a naïve
and deterministic G2P model, but its derived
measurements are available for all languages
in VoxClamantis. While Unitran is particu-
larly error-prone for languages with opaque or-
thographies (Salesky et al., 2020), we �lter out
the languages with lower-quality alignments
(as we detail below). The original dataset has
690 doculects from 635 languages in 70 lan-
guage families.

In order to study the trade-off hypothesis we
require two measurements: phone durations and
phone-level surprisals. As mentioned above, phone

4These texts were crawled frombible.is and utterance-
aligned by Black (2019) for the CMU Wilderness dataset.

5A list of all languages can be found in App. C.
6We set Wikipron (Lee et al., 2020) alignments aside be-

cause we could not obtain word position information for them.
7The term doculect refers to a dialect as recorded in a

speci�c document, in this case a Bible reading.

Figure 2: The languages of the VoxClamantis corpus
geo-located and coloured by language family.

durations are readily available in VoxClamantis.
Phone-level surprisals, on the other hand, are not,
so we employed phone-level language models in
order to estimate them (as detailed in §3). Given
both these values, we can now perform our cross-
linguistic analysis. First, though, we will describe
some data quality checks.

Filtering Unitran. The phone and utterance
alignments for the VoxClamantis dataset were auto-
matically generated and may be noisy due to both
of these processes. The labels from the Unitran
G2P also contain inherent noise due to their deter-
ministic nature. Accordingly, we �lter the data us-
ing the mean Mel-Cepstral Distortion (MCD) as an
implicit quality measure for the alignments. MCD
is an edit-distance metric which evaluates the dis-
tance between some reference speech and speech
synthesised using the alignments (Kubichek, 1993).
We use the utterance-level MCD scores from the
CMU Wilderness dataset (Black, 2019), removing
all utterances with an MCD score higher than 7.
This leaves us with 647 doculects from 600 lan-
guages in 69 language families.

5 Design Choices

There are several critical design choices that must
be made when performing a cross-linguistic anal-
ysis of this nature. While some may at �rst seem
inconsequential, they can have a large impact on
down-stream results. Speci�cally, we assume that
there is a surprisal–duration trade-off which is
caused by a capacity to process information, which
should be roughly constant across human popu-
lations. We must thus control for other potential
sources for this trade-off, which we deem to be
uninteresting in this work.

Phone-level Analysis. While there are good rea-
sons for performing this analysis at the syllable- or



word-level, we believe phones are advantageous for
out study. Greenberg (1999), for instance, shows
syllables are less prone than phones to be com-
pletely deleted in casual speech; syllables would
thus allow more robust estimates of speech dura-
tion. Nonetheless, languages that allow for more
complex (and long) syllabic structures will natu-
rally have more valid syllables. A larger number
of syllables, in turn, will cause each syllable to
be less predictable on average.8 Therefore, more
complex syllables will be both longer and unpre-
dictable. Studying syllables can thus lead to trivial
trade-offs which mainly re�ect the methodology
employed. A similar argument can be made against
word-level analyses.9 Performing this type of anal-
ysis at the phone-level should alleviate this effect,
making it the more appropriate choice.

Articulatory Costs. Whereas the range of effort
used to produce individual phones may be smaller
than in other linguistic hierarchies, there is still a
considerable variation in the cost associated with
each phone's articulation. For instance, Zipf (1935)
argued that a phone's articulatory effort was related
to its frequency. If this is indeed the case, a di-
rect analysis of surprisal–duration pairs that does
not control for articulatory effort could also lead
to a trivial trade-off: the long and effortful phones
will be less frequent and likely to be more unpre-
dictable, having higher surprisals. To account for
each phone's articulatory cost, we use mixed ef-
fects models in our analysis, and include phone
identity as random intercept effects.

Word-initial and Word-�nal Lengthening.
There is ample evidence showing that, across lan-
guages, word-initial and word-�nal segments are
lengthened during production (Fougeron and Keat-
ing, 1997; White et al., 2020). Another property is
that word-initial positions carry more information
than word-�nal ones, which has been well-studied
in both psycholinguistics and information-theory.
From a psycholiguistic perspective, it seems
word-initial segments are more important for word
recognition (Bagley, 1900; Fay and Cutler, 1977;
Bruner and O'Dowd, 1958; Nooteboom, 1981).
Under an information-theoretic analysis, it has

8Probabilities must sum to 1. This �nite probability mass
means average probability must go down with more classes.

9Concatenative languages, for instance, would have both
longer and less predictable words. Take the German word
Hauptbahnhofwhich can be translated into English ascentral
train station. Predicting this single (and long) German word
is equivalent to predicting three words in English.

been observed that earlier segments in a word
are more surprising than later ones (van Son and
Pols, 2003; King and Wedel, 2020; Pimentel et al.,
2021). Word-initial segments are both lengthened
and more surprising, potentially for unrelated
reasons. An analysis which does not control for
such word-positioning is thus doomed to �nd
trivial correlations. To account for this word-initial
and word-�nal lengthening, we include three word
position �xed effects (initial, middle, or �nal) in
our mixed effects models.

Sentential Context. The amount of context
that a model conditions on when estimating
probabilities will undoubtedly have an impact
on a study of this nature. For example, a model
that cannot look back beyond the current word,
such as the one employed by Coupé et al. (2019),
can by de�nition only condition on the previous
phones in the same word. Arguably, a cognitively
motivated surprisal–duration trade-off should
estimate surprisal using a phone's entire sentential
context and not only the prior context inside
a speci�c word. In this work, we make use of
LSTMs (as described in §3), which can model long
context dependencies (Khandelwal et al., 2018).

6 Generalised Mixed Effects

Throughout our experiments, we will use mixed-
effects models; we provide a brief introduction here
(see Wood (2017) for a longer exposition). Clas-
sical linear regressions models can be written as:

yi = � | x i + � i ; � i � N (0; � 2
err ) (5)

whereyi is the target variable,x i 2 Rd is the
model's input and� 2 Rd a learned weight
vector. Further, the error (or unexplained variance)
term� i is assumed to be normally distributed and
independent and identically distributed (i.i.d.)
across data instances. Such an i.i.d. assumption,
however, may not hold. In our analysis, for
instance, multiple phones come from each of our
analysed languages; it is thus expected that such
co-language phones share dependencies in how
their � i are sampled. Mixed-effects models allow
us to model such dependencies through the use of
random effects. Formally, for an instancex i from
a speci�c languagèi , we model:

yi = � | x i + ! ` i + � i ;
! ` i � N (0; � 2

! )
� i � N (0; � 2

err )
(6)



where! ` i is a random effect and� is now termed
a �xed effect. Here,! ` i is an intercept term which
is assumed to be shared across all instances of
languagè i , and� 2

! is directly learned from the
data. Similarly, we can add random slope effects:

yi = � | x i + � |
` i

x i + ! ` i + � i ;
� ` i

� N (0; � � )
! ` i � N (0; � 2

! )
� i � N (0; � 2

err )
(7)

where each� ` i
2 Rd is a language-speci�c

random slope and� � is a (learned) covariance
matrix. Furthermore, our assumption that error
terms are normally distributed may not hold in
this setting. Phone durations, for instance, cannot
be negative and are positively skewed, making a
log-linear model more appropriate:

log(yi ) = � | x i + � |
` i

x i + ! ` i + � i (8)

where� ` i
, ! ` i , and � i are still distributed as in

eq. (7). This is similar to modelling the original
� i terms as coming from a log-normal distribution.
We note though, that under this model our effects
become multiplicative (as opposed to additive):
an increase of� unit in the right side will make
the value ofyi be multiplied bye� . We will use
lme4's (Bates et al., 2015) notation to represent
these models. Under this notation, a parenthesis
represents a random effect and parameters are left
out. We thus re-write eq. (8) as:

log(y) = 1 + x + (1 + x j language) (9)

7 Experiments and Results10

In this section, we will �rst analyse the surprisal–
duration trade-off in individual languages. We will
then perform an analysis with our full data, study-
ing the trade-off both within and across languages
with a single model. Finally, in our last experiment
we will average phone information per language to
analyse a purely cross-linguistic trade-off.

7.1 Individual Language Analyses

We �rst analyse languages individually, verifying
if more surprising phones have on average a longer
duration. With this in mind, we estimate a gen-
eralised mixed effects model for each language.
We control for each phone's articulatory costs by

10Our code is available athttps://github.com/
rycolab/surprisal-duration-tradeoff .

Figure 3: Language-speci�c trade-off slopes in Epitran
from the mixed effects model in eq. (10). They-axis
represents a multiplicative effect, duration is multiplied
by y per extra bit of phone information.

adding phone identity as a random effect. Addition-
ally, we include �xed effects to control for word po-
sition effects, adding separate intercepts for word-
initial and word-�nal positions. Finally, we con-
sider a �xed effect relating surprisal and word po-
sitions. At word-initial positions, for instance, the
connection between surprisal and duration could
potentially be stronger or weaker.11 This leaves us
with the following relationship:

log(duration ) = 1 + surprisal + position

+ surprisal � position + (1 j phone) (10)

In this parametrisation, a trade-off between
surprisal and duration will emerge as a positive
and signi�cant surprisal slope. Analogously,
an inverse trade-off will emerge as a negative and
signi�cant slope, since we use two-tailed statistical
tests.12 Out of the 39 doculects in Epitran, 30
present statistically signi�cant positive slopes
(23=29 languages, and8=8 families; meaning at
least one language showed a signi�cant effect per
family). On Unitran (which we recall is a noisier
dataset),326=647 doculects presented signi�cantly
positive slopes (319=600 languages, and53=69

families). Additionally, we �nd no language in
either dataset with signi�cantly negative slopes:
we either �nd evidence for the trade-off or we have
no association whatsoever.

The trade-off strength, as measured by the
surprisal–duration slopes, can be seen in Fig. 1
(on �rst page) and Fig. 3. As noted above, by

11We analyse the impact of both these effects, phone iden-
tity and word position, in App. A.

12Statistical signi�cance was assessed under a con�dence
level of � < 0:01 and we used Benjamini and Hochberg
(1995) corrections for multiple tests whenever necessary.



predicting a linear change in logarithmic scale, our
effects become multiplicative instead of additive.
The average multiplicative slope we get across
all the analysed languages in both datasets is
roughly 1:02, meaning that each added bit of
information multiplies duration by 1.02. We
believe this should serve as strong support for
our hypothesis of a trade-off within languages.
Moreover, to the best of our knowledge, this is the
most representative study of the UID hypothesis to
date, as measured by the number and typological
diversity of analysed languages.

7.2 Aggregated Cross-linguistic Analysis

Following the previous study, we now run a cross-
linguistic analysis by aggregating all the languages
within a single model. We add the same controls as
before, but further nest the phone random effects
per language (meaning we create one random effect
per phone–language pair). We also include random
language-speci�c intercepts and slopes. Formally,

log(duration ) = 1 + surprisal + position

+ surprisal � position

+ (1 + surprisal + surprisal � position

j language)

+ (1 j language : phone) (11)

After estimating this generalised mixed effects
model, we �nd statistically signi�cant cross-
linguistic trade-off effects in both datasets. The
multiplicative slope is roughly1:02 in both
datasets, again meaning each extra bit of informa-
tion multiplies the duration by this value (� =
1:023in Unitran and� = 1 :015in Epitran).13 We
further analyse the per-language trade-off slopes,
which can be seen in Fig. 4. These language-
speci�c slopes are calculated by summing the �xed
effect of the surprisal term with its random effects
per language. We see a similar trend in this �gure
as in Fig. 3, with most of the analysed doculects
having a positive surprisal–duration trade-off.

7.3 Cross-linguistic Trade-offs

Our previous experiment in §7.2 makes use of
language-speci�c random effects. These effects
allow the model to potentially representwithin-
language trade-off effects, while correcting for

13For the Epitran data, we performed this analysis while
also adding language family effects and found similar results.
However, we could not repeat this experiment for Unitran as
the model was too memory intensive.

Figure 4: Language-speci�c trade-off slopes in Epitran
from the mixed effects model in eq. (11). They-axis
represents a multiplicative effect, duration is multiplied
by y per extra bit of phone information.

cross-linguistic differences by using the model pa-
rameters. It therefore cannot serve as con�rmation
of a trade-off across the world's languages by itself,
only as additional evidence for it. In this section,
we do not use language-speci�c random effects;
instead, we average surprisal within a language
for each phone–position tuple. We then train the
following mixed effects model:

duration = 1 + surprisal + position

+ surprisal � position + (1 j phone) (12)

This equation is identical to the one in eq. (10),
but now we model the language–phone–position
tuples, instead of a language's individual phones.14

Additionally, since we are aggregating results per
tuple for this analysis, the central limit theorem
tells us our model's residuals should be roughly
Gaussian. We thus use linear mixed effects
models, instead of the generalised log-linear ones.
By analysing this model we �nd a signi�cantly
positive surprisal–duration additive slope, of
� = 1 :5 milliseconds per bit (� = 1 :54 in Unitran
and � = 1 :52 in Epitran). This con�rms the
expected cross-linguistic trade-off: languages
with more surprising phones really have longer
durations, even after controlling for word positions
and phone-speci�c articulatory costs.

8 Discussion

The pressure towards a speci�c information rate
(potentially set at a speci�c cognitive channel ca-

14We note that phone labels may not always align exactly
across languages here, due to possible differences between
VoxClamantis' G2P label sets. This may introduce noise
into this analysis. It is reassuring, though, that the previous
analyses with phones as language-speci�c effects lead to
similar conclusions.



pacity) has been posited as an invariant across lan-
guages. Directly testing such a claim is perhaps im-
possible, as data alone cannot prove its universality.
Moreover, providing meaningful evidence towards
this phenomenon requires a careful and comprehen-
sive cross-linguistic analysis, which we attempt to
perform in this work. In comparison to similar stud-
ies, such as those by Pellegrino et al. (2011) and
Coupé et al. (2019), we employ more sophisticated
techniques to measure a linguistic unit's (in our
case, a phone's) information content. Moreover, we
also employ more rigorous strategies for analysing
the surprisal–duration relationship, controlling for
several potential confounds. By introducing these
improvements, we attain a more detailed under-
standing of the role of information in language
production, both across and within languages.

Experimentally, we �nd that, after controlling
for other artefacts, the information conveyed by a
phone in context has a modest but signi�cant rela-
tionship with phone duration. We see that this rela-
tionship is consistently positive across a number of
investigated settings, despite being small in magni-
tude, meaning that more informative phones are on
average longer. Additionally, using two-tailed tests
at � < 0:01 throughout our experiments, we �nd
no language with a signi�cant negative relationship
between phone surprisal and duration.

Limitations and Future Work. In this work, we
implemented a careful evaluation protocol to study
the relationship between a phone's surprisal and
duration in a representative set of languages. To
perform our study in such a large number of lan-
guages, however, we rely on the automatically
aligned phone measurements from VoxClamantis,
which contain noise from various sources. Future
work could investigate if biases in the dataset gen-
eration protocol could impact our results. Further,
VoxClamantis data is derived from readings of the
Bible. Future studies could extend our analysis to
other settings, such as conversational data.

9 Conclusion

In this work, we have provided the widest cross-
linguistic investigation of phone surprisal and
duration to date, covering 600 languages from over
60 language families spread across the globe. We
con�rm a surprisal–duration trade-off both across
these analysed languages and within a subset of
319 of them, covering 53 language families. While
there exist arguments against some of our design

choices, our overarching conclusion is remarkably
consistent across our analyses: the presence of
a surprisal–duration trade-off is signi�cant in
language production. In other words, both across
and within languages, phones carrying more
information are longer, while phones carrying less
information are produced faster.
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A Confound analysis

In this section, we analyse the word position and ar-
ticulatory cost confounds mentioned in §5, as they
could have an impact on a surprisal–duration trade-
off analysis. We first investigate the parameters
from our mixed effects models containing word po-
sitioning effects. The word-initial and word-final
intercepts are significantly positive in all 39 lan-
guages of our mono-lingual Epitran analysis (rep-
resented by eq. (10)) and in both cross-linguistic
experiments (eqs. (11) and (12)). The intercepts for
word-initial positions average at 67 milliseconds,
while the word-final ones average at 32, provid-
ing new evidence for this word boundary lengthen-
ing effect. Since word position is correlated with
surprisal, this boundary lengthening phenomenon
could pose as a source of bias in our results, had
we not controlled for it.

We now explore the potential bias introduced by
phone-specific articulatory costs. As mentioned
in §5, languages with larger phonetic inventory
sizes may be more inclined to use marked phones,
which have longer duration. While this correla-
tion between inventory size and unit cost would be
particularly problematic for larger linguistic units
(e.g. syllables) it can also affect our phone-level
analysis. In fact, we take the Spearman correlation
between a language’s inventory size (in number
of unique phones) and its average phone duration,
finding a positive correlation of ρ = .28. The aver-
age surprisal–duration Spearman correlation across
languages is ρ = 0.45. As inventory size and sur-
prisal are strongly correlated across languages, we
find that pure inventory effects may be driving a
large part of the analysed correlation.

To analyse how strongly both confounds would
reflect in the main effect if left unaccounted
for, we rerun our previous analyses, but without
effects for either position, phone, or both. We
do so for Epitran only. The resulting estimated
trade-off effects are given in Tab. 1. We indeed
see that these confounds are typically absorbed
by the fixed surprisal effect in all three settings.
Notably, without confound control we would
find supposedly significant results in all analysed
languages, and a 10 times stronger cross-linguistic
effect, all of which are in fact spurious.

Trade-off Slope φ

Controls Mono-lingual Cross-linguistic

Phone Position eq. (10) # Sign eq. (11) eq. (12)

3 3 1.02 30 1.02z 1.52z

3 7 1.02 37 1.03z 0.93z

7 3 1.03 33 1.02z 15.75
7 7 1.04 39 1.04z 15.73y

Table 1: Comparison of trade-off (in milliseconds per
bit) found when not conditioning on potential con-
founds. # Sign represents the number of significant lan-
guages (α < 0.01) in a mono-lingual analysis.
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C Languages

The languages used in our analyses are listed below, grouped by language family, along with their three
character ISO 639-3 code, and the grapheme-to-phoneme schemes for which phone alignments are
available for that language in the VoxClamantis dataset – Unitran: U, Epitran: E (Salesky et al., 2020).
ISO codes for which there are multiple languages listed may represent dialects or other sub-language
variations and/or multiple available Bible versions for which data is available.
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Sranan Tongo
Tok Pisin
DOGON:

Toro So Dogon
DRAVIDIAN:

Kannada
Kurukh

Malayalam
Tamil

Telugu
EAST BIRD'S HEAD:

Meyah
EAST BOUGAINVILLE:

Naasioi
EASTERN SUDANIC:

Acoli
Adhola

Alur
Bari

Datooga
Kakwa

Karamojong
Kumam

Kupsabiny
Lango (Uganda)

Luwo
Mabaan

Markweeta


