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Abstract

While there exist scores of natural languages,
each with its unique features and idiosyn-
crasies, they all share a unifying theme:
enabling human communication. We may
thus reasonably predict that human cognition
shapes how these languages evolve and are
used. Assuming that the capacity to process
information is roughly constant across human
populations, we expect a surprisal-duration
trade-off to arise both across and within lan-
guages. We analyse this trade-off using a cor-
pus of 600 languages and, after controlling
for several potential confounds, we find strong
supporting evidence in both settings. Specifi-
cally, we find that, on average, phones are pro-
duced faster in languages where they are less
surprising, and vice versa. Further, we confirm
that more surprising phones are longer, on av-
erage, in 319 languages out of the 600. We
thus conclude that there is strong evidence of a
surprisal—-duration trade-off in operation, both
across and within the world’s languages.

1 Introduction

During the course of human evolution, countless
languages have evolved, each with unique features.
Despite their stark differences, however, it is
plausible that shared attributes in human cognition
may have placed constraints on how each language
is implemented. These constraints, in turn, may
lead to compensations and trade-offs in the world’s
languages. For instance, if we assume a channel
capacity (Shannon, 1948) in human’s ability to
process language (as posited by Frank and Jaeger,
2008), we may make predictions about these
trade-offs. Additionally, if we assume this capacity
to be uniform across human populations, these
trade-offs will extend cross-linguistically.

Within languages, there is a direct connection
between this channel capacity assumption and
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Figure 1: Surprisal-duration trade-off slopes. The y-
axis presents a multiplicative effect, duration is multi-
plied by y per bit of information. Sorted dots represent
languages in Unitran; ‘+° are languages in Epitran.

the uniform information density hypothesis (UID;
Fenk and Fenk, 1980; Aylett and Turk, 2004; Levy
and Jaeger, 2007), which predicts that speakers
smooth the information rate in a linguistic signal
so as to keep it roughly constant; by smoothing
their information rate, natural languages can
stay close to a (hypothetical) channel capacity.
Across languages, a unified channel capacity
allows us to derive a specific instantiation of the
compensation hypothesis (Hockett, 1958), with
information density (measured in, e.g., bits per
phone) being compensated by utterance speed (in,
e.g., milliseconds per phone). We may thus predict
a trade-off between surprisal' and duration both
within and across the world’s languages.

This trade-off has been studied amply within
high resource languages (Genzel and Charniak,
2002; Bell et al., 2003; Mahowald et al., 2018,
inter alia). Cross-linguistically, however, this
trade-off has received comparatively little attention,
with a few notable exceptions such as Pellegrino

'Surprisal is defined as the negative log-probability of an
event, e.g. observing a phone given its prior context.
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et al. (2011) and Coupé et al. (2019). Severabf syllables per second, although Italian was found
factors have inhibited cross-linguistic studies ofto be somewhat slower in phones per second. Such
this kind. Arguably, the most prominent is the cross-linguistic comparisons, however, are not
sheer lack of data necessary to investigate thstraightforward, since the range of speech rate can
phenomenon. While massively cross-linguisticvary widely within a single language, depending
data abounds in the form of wordlists (Wichmannon sentence length (Fonagy and Magdics, 1960)
et al., 2020; Dellert et al., 2020), surprisal is aand type of speech (e.g. storytelling vs interview;
context-dependent measure and, therefore, isolatd¢bwal et al., 1983). In a meta-analysis of these
word types are not enough for this analysisstudies, Roach (1998) concludes that carefully
Further, as we have a speci ¢ hypothesis for whyassembled speech databases would be necessary
this trade-off should arise (humans' informationto answer this question. In this line, Pellegrino
processing capacity), we are not interested iret al. (2011) recently analysed the speech rate of 8
simply nding any correlation between surprisal languages using a semantically controlled corpus.
and duration. Several confounds could driveThey found strong evidence towards non-uniform
such a correlation, but most of these are eithespeech rates across these languages.
trivially true or uninteresting from our perspective. This result is not surprising, however, given that
Therefore, a thorough analysis of this trade-offnatural languages vary widely in their phonology,
needs to control for these potential confounds. morphology, and syntax. Despite these differences,

In this work, we investigate the surprisal-researchers have hypothesised that there exist com-
duration trade-off by analysing a massivelypensatory relationships between the complexity of
multi-lingual dataset of more than 600 languageshese components (Hockett, 1958; Martinet, 1955).
(Salesky et al., 2020). We present an experimentdtor instance, a larger phonemic diversity could be
framework, controlling for several possible compensated by shorter words (Moran and Blasi,
confounds, and evaluate the surprisal-duratio2014; Pimentel et al., 2020) or a larger number of
trade-off at the phone level. We nd evidence irregular in ected forms could lead to less complex
of a trade-off across languages: languages witmorphological paradigms (Cotterell et al., 2019).
more surprising phones compensate by makinguch a compensation can be thus seen as a type of
utterances longer. We also con rm mono-lingualbalance, where languages compromise reliability
trade-offs in 319 languages, out of 60Qyithin  versus effort in communication (Zipf, 1949; Mar-
these languages, more surprising phones atiet, 1962). One natural avenue for creating this
pronounced with a signi cantly longer duration. balance would be a language's information rate.
This is the most representative evidence of théf this were kept roughly constant, the needs of
uniform information density hypothesis to date.both speakers (who prefer shorter utterances) and
Moreover, we did not nd evidence of a single listeners (who value easier comprehension) could
language where the opposite effect is in operatiothe accommodated. Speech rate would then be
(i.e. where more informative phones are shortercompensated by information density, resulting in a
Given these collective results, we conclude there igorm of surprisal-duration trade-off. Indeed, Pelle-
strong evidence for a surprisal—duration trade-offyrino et al. (2011) and Coupé et al. (2019) present
both across and within the world's languages. initial evidence of this trade-off across languages.

) _ Analogously, the UID hypothesis posits that,

2 Surprisal and Duration within a language, users balance the amount of

Cross-linguistic comparisons of information rateinformation per linguistic unit with the duration
go back at least 50 years. In a study compariné’f its utterance. This hypothe3|s has _been usec_i to
phonemes per second, Osser and Peng (196gr>f|_ola}|n arange of expenmental dat_aln psycholin-
found no statistical difference between the speecUIStiCS, including syntactic reduction (Levy and
rate of English and Japanese native speakers. H#€9€r, 2007) and contractions, suchms/s're

a similar study, den Os (1985, 1988) compare(f':ra”k and Jaeger, 2008). While this theory is

Dutch and Italian and found no difference in termsSoMewhat under-speci ed with respect to its causal

— mechanisms, as we argue in Meister et al. (2021),
The original number of languages was 635, but after re- f its typical int tati is that
moving those with quality issues, we end up with 600. ThisON€ OT ItS typical interpretations 1S that users are

process is explained in §4. maximising a communicative channel's capacity



(Frank and Jaeger, 2008; Piantadosi et al., 2011ol. The hidden states are then linearly transformed
If we assume this channel's capacity to be constarand projected onto SI*1 | the probability simplex,
across languages, we may derive a cross-linguistizia a softmax to compute the desired distributfon:
version of UID. Such a hypothesis would predict,

for instance, that speakers of languages with less P (St | S<t) = softmax(Wh ¢+ b)  (3)
informative phones will make them faster. Under

. o : (isj+1) d (iSj+1)
this speci c interpretation, our study can be seen agvherew 2 R ’ andb_ 2 R are
evidence of UID as a cross-linguistic phenomenor{‘:"""mable parameters. We optimise the parameters
by minimising our model's cross-entropy with a

3 Measuring Surprisal training set, which corresponds to minimising the

. following objective
To formalise our approach, we rst present a stan-

dard measure of information contergurprisal. Qs
In the context of natural language, surprisal (Hale, H (S, j S« ) = logp (s™ js)
2001) measures the Shannon information content n=1 t=1
a linguistic unit conveys in context, which can be 4)
measured as its negative log-probability: where we assumies("gj\_; are sampled from the
true distributionp( ).
H(St = stj S<«t = s<«t)= logp(st ] S<t) To avoid over tting to this training set, we

(1) then estimate the cross-entropy with a validation

In this equation,S is a sentence-level random getf b(m)gmzl , where we stop training once this
variable, with instances 2 S , andt indexes a yjgjidation cross-entropy stops decreasing. Note
position in the sentence. Accordingly, we de ne that minimising the cross-entropy is equivalent
S as the set of phones in a given phonetic alphabefp minimising the Kullback—Leibler divergence
and we uses< to indicate the context in which petween two distributions. Further, if we have
phones; appears. access to a larger number of sampMs we

Unfortunately, this surprisal is not readily assume this cross-entropy estimate will give us a
available, since we would need access to the trugght approximation to the cross-entropy between
distributionp(s; j s< ) to compute it. We will 5 and the true distribution. Thus, the lower this
use an approximatiop (st j S<t) instead, i.e. @ cross-entropy, the closer we may assume our
phone-level model with estimated parameters  model is to the tru@( ), and the better we should

3.1 Approximating p(s: j S<t). expect our surprisal estimates to be.

While much of the original psycholinguistic work Hyper-parameter choices. We implement our

on surprisal estimateg using n-gram models phone-level LSTM language models with two hid-
(Levy and Jaeger, 2007; Coupé et al., 20it9, den layers, an embedding size of 64 and a hidden
ter alia), recent work has shown that a languagesize of 128. We further use a dropout®$ and
model's psychometric predictive power correlates? batch size of 64. We train our phone-level LSTM
directly with its quality, measured by its cross-models using AdamW (Loshchilov and Hutter,
entropy in held-out data (Goodkind and Bicknell,2019) with its default hyper-parameters in PyTorch
2018; Wilcox et al., 2020). We will thus make use (Paszke et al., 2019). We evaluate our models
of LSTMs in this work, since they have been shownon a validation set every 100 batches, stopping
to outperformn-grams on phone-level languagetraining when we see no improvement for ve
modelling tasks (Pimentel et al., 2020). We rst en-consecutive evaluations. We split each language’s
code each phorg into a high-dimensional lookup data (described in 84) into train-dev-test sets using
embeddingg; 2 RY: whered; is its embedding an 80-10-10 split, using sentences as our delimiters.
size. We then process these embeddings using ¥4e thus do not separate phone data points from
LSTM (Hochreiter and Schmidhuber, 1997), whichthe same sentence. We use the rst two splits to
outputs contextualised hidden state vectors: train and validate our models, while the test set is

d held out and used throughout our analysis.
hy = LSTM( hy 1;€ 1) 2 R™ (2) -

3The dimension of the probability simplexji§j + 1 to
where the initial hidden state is the zero vector account for an end-of-sentence symbol.

and the initial phoneg is a start-of-sentence sym-



4 Data

We use the VoxClamantis dataset for our analy-
sis (Salesky et al., 2020). This dataset is derived
from spoken readings of the Bifland spans more
than 600 languages from 70 language families, as
shown in Fig. 2 This dataset offers us a semanti-
cally controlled setting for our experiments, as it is
composed of translations of a single text, the Bible.
This df’:ltaset contains aytomatlcally generategigure 2: The languages of the VoxClamantis corpus
phong alignments anql derived phonetic measurggseo_located and coloured by language family.
for all its languages (with both phone duration, an
vowels' rst and second formant frequencies). On
average, there are approximately 9,000 utterancedurations are readily available in VoxClamantis.
(or 20 hours of speech) per language, making iPhone-level surprisals, on the other hand, are not,
the largest dataset of its kind. Phone labels werg§o we employed phone-level language models in
generated using grapheme-to-phoneme (G2Ryder to estimate them (as detailed in 83). Given
tools and time aligned using either multilingual both these values, we can now perform our cross-
acoustic models (Wiesner et al., 2019; Povey et allinguistic analysis. First, though, we will describe
2011) or language-speci ¢ acoustic models (Blacksome data quality checks.
2019; Anumanchipalli et al., 2011). VoxClamantis

. . iltering Unitran. The phone and utterance
offers its phonetic measurements under three GZE g P

. gllgnments for the VoxClamantis dataset were auto-
models, which trade-off language coverage an : .
. . Mmatically generated and may be noisy due to both
quality. We will focus on twd

of these processes. The labels from the Unitran
« Epitran (Mortensen et al., 2018). Thisisa G2P also contain inherent noise due to their deter-

collection of high quality G2P models based ministic nature. Accordingly,_we !ter the data us-
on language-speci c rules. Phonetic measureld the mean Mel-Cepstral Distortion (MCD) as an

ments produced with Epitran are available forimplicit quality measure for the alignments. MCD
a collection of 39 doculectsfrom 29 lan- IS an edit-distance metric which evaluates the dis-

guages (as de ned by ISO codes) in 8 laniance between some reference speech and speech

guage families. synthesised using the alignments (Kubichek, 1993).
We use the utterance-level MCD scores from the

* Unitran (Qian et al., 2010). This is a naive  CMU Wilderness dataset (Black, 2019), removing

and deterministic G2P model, but its derivedal| utterances with an MCD score higher than 7.

measurements are available for all languageshis leaves us with 647 doculects from 600 lan-

in VoxClamantis. While Unitran is particu- guages in 69 language families.

larly error-prone for languages with opaque or-

thographies (Salesky et al., 2020), we lterout> Design Choices

the languages with lower-quality a‘“gnmemSThere are several critical design choices that must

. Ye made when performing a cross-linguistic anal-
690 docule_c_;ts from 635 languages in 70 Iani/sis of this nature. While some may at rst seem
guage families.

inconsequential, they can have a large impact on
In order to study the trade-off hypothesis wedown-stream results. Speci cally, we assume that
require two measurements: phone durations andiere is a surprisal-duration trade-off which is

phone-level surprisals. As mentioned above, phongaused by a capacity to process information, which
- should be roughly constant across human popu-
“These texts were crawled frobible.is and utterance-

aligned by Black (2019) for the CMU Wilderness dataset. lations. We mQSt thus ContrOI_ for other patential
5A list of all languages can be found in App. C. sources for this trade-off, which we deem to be

We set Wikipron (Lee et al., 2020) alignments aside beuninteresting in this work.
cause we could not obtain word position information for them.
"The term doculect refers to a dialect as recorded in @hone-level Analysis. While there are good rea-

speci ¢ document, in this case a Bible reading. sons for performing this analysis at the syllable- or



word-level, we believe phones are advantageous fdseen observed that earlier segments in a word
out study. Greenberg (1999), for instance, showare more surprising than later ones (van Son and
syllables are less prone than phones to be corols, 2003; King and Wedel, 2020; Pimentel et al.,
pletely deleted in casual speech; syllables woul@021). Word-initial segments are both lengthened
thus allow more robust estimates of speech durand more surprising, potentially for unrelated
tion. Nonetheless, languages that allow for moreeasons. An analysis which does not control for
complex (and long) syllabic structures will natu-such word-positioning is thus doomed to nd
rally have more valid syllables. A larger numbertrivial correlations. To account for this word-initial
of syllables, in turn, will cause each syllable toand word- nal lengthening, we include three word
be less predictable on averadg@herefore, more position xed effects (initial, middle, or nal) in
complex syllables will be both longer and unpre-our mixed effects models.

dictable. Studying syllables can thus lead to trivial

trade-offs which mainly re ect the methodology Sentential Context. The amount of context

employed. A similar argument can be made againstthat a_r_n_odel _condltlons on when est!matlng
probabilities will undoubtedly have an impact

word-level analyse$ Performing this type of anal- :
y g yp on a study of this nature. For example, a model

ysis at the phone-level should alleviate this effect
o . . that cannot look back beyond the current word,
making it the more appropriate choice.

such as the one employed by Coupé et al. (2019),
Articulatory Costs. Whereas the range of effort can by de nition only condition on the previous
used to produce individual phones may be smallephones in the same word. Arguably, a cognitively
than in other linguistic hierarchies, there is still amotivated surprisal-duration trade-off should
considerable variation in the cost associated witlestimate surprisal using a phone's entire sentential
each phone's articulation. For instance, Zipf (1935)context and not only the prior context inside
argued that a phone's articulatory effort was relateda speci ¢ word. In this work, we make use of
to its frequency. If this is indeed the case, a diLSTMs (as described in §3), which can model long
rect analysis of surprisal-duration pairs that doesontext dependencies (Khandelwal et al., 2018).
not control for articulatory effort could also lead . .

to a trivial trade-off: the long and effortful phones 6  Generalised Mixed Effects

will be less frequent and likely to be more unpre—rpq,ghout our experiments, we will use mixed-
dictable, having higher surprisals. To account fOfugte s models; we provide a brief introduction here

each phone's articulatory cost, we use mixed ef(see Wood (2017) for a longer exposition). Clas-

fects models in our analysis, and include phong;ic, jinear regressions models can be written as:
identity as random intercept effects.

= |y . ) .2
Word-initial and Word- nal Lengthening. yi= 'xit i i N (0 &) (5

There is ample evidence showing that, across IaQ\?herey- is the target variablex; 2 RY is the
guages, word-initial and word- nal segments aremodel‘sl input and 2 RY a Ilearned weight

!engtlf;%nﬁcil/\(/j#:mg tprlod; gggn El‘:out?]eron and fe.abector. Further, the error (or unexplained variance)
Ing, ' e etal, ). Another property ISterm i iIs assumed to be normally distributed and

:Eatwordd-mm?l posmor;]_s ;ﬁ:ry r:;ore Imcc:Irm,[at('jc.)ndindependent and identically distributed (i.i.d.)
an word- nal ones, which has been well-studie across data instances. Such an i.i.d. assumption,

in both psycholinguistics and information-theory.however may not hold. In our analysis, for
From a psycholiguistic perspective, it seems ' ' ’

d-initial ; , ant f dmstance, multiple phones come from each of our
word-initial Segments are more important for wor analysed languages; it is thus expected that such

recognition (Bagley, 1900; Fay and Cutler, 1977't:o-language phones share dependencies in how

Bruner and O'Dowd, 1958; Nooteboom, 1981)‘their i are sampled. Mixed-effects models allow

Under an information-theoretic analysis, it hasus to model such dependencies through the use of

®Probabilities must sum to 1. This nite probability mass random effects. Formally, for an instarncefrom
means average probability must go down with more classesa speci ¢ languagé;, we model:

%Concatenative languages, for instance, would have both b ’
longer and less predictable words. Take the German word
Hauptbahnhofwhich can be translated into English@mtral
train station Predicting this single (and long) German word
is equivalent to predicting three words in English.

. -2



where! -, is a random effect and is now termed

a xed effect. Here! -, is an intercept term which

is assumed to be shared across all instances of
language'j, and ? is directly learned from the
data. Similarly, we can add random slope effects:

NG )
yi = lXi+ liXi+!‘i+ i 'y N (G '2)
i N (0 grr)

(7)
where each - 2 RY is a language-specic
random slope and is a (learned) covariance Figure 3: Language-speci c trade-off slopes in Epitran
matrix. Furthermore, our assumption that erroffom the mixed effects model in eq. (10). Theaxis
terms are normally distributed may not hold inrepresentsamultlpllcatlve effect, duration is multiplied
. . . . tra bit of ph inf tion.
this setting. Phone durations, for instance, cannotfyy per extra bit of phone information

be negative and are positively skewed, making a

log-linear model more appropriate: adding phone identity as a random effect. Addition-
| | ally, we include xed effects to control for word po-
log(yi)= "xi+ “ xi+!y+ i (8) sition effects, adding separate intercepts for word-
o . Initial and word- nal positions. Finally, we con-
where -, !, and ; are still distributed as in P y

sider a xed effect relating surprisal and word po-
sitions. At word-initial positions, for instance, the
connection between surprisal and duration could

S " ?Jotentially be stronger or weaker.This leaves us
become multiplicative (as opposed to addltlve)With the following relationship:

an increase of unit in the right side will make
the value ofy; be multiplied bye . We will use log(duration ) =1+ surprisal + position
Ime4s (Bates et al., 2015) notation to represent

these models. Under this notation, a parenthesis

represents a random effect and parameters are laff this parametrisation, a trade-off between
out. We thus re-write eq. (8) as: surprisal and duration will emerge as a positive
and signi cantsurprisal slope. Analogously,
an inverse trade-off will emerge as a negative and
signi cant slope, since we use two-tailed statistical
tests!? Out of the 39 doculects in Epitran, 30
In this section, we will rst analyse the surprisal—present statistically signi cant positive slopes
duration trade-off in individual languages. We will (2329 languages, an@=s families; meaning at
then perform an analysis with our full data, studyleast one language showed a signi cant effect per
ing the trade-off both within and across languagegamily). On Unitran (which we recall is a noisier
with a single model. Finally, in our last experiment dataset)32¢=s47 doculects presented signi cantly
we will average phone information per language topositive slopes 3%s00 languages, and3=s9
analyse a purely cross-linguistic trade-off. families). Additionally, we nd no language in
either dataset with signi cantly negative slopes:
we either nd evidence for the trade-off or we have
We rst analyse languages individually, verifying no association whatsoever.

if more surprising phones have on average a longer The trade-off strength, as measured by the
duration. With this in mind, we estimate a gen-surprisal-duration slopes, can be seen in Fig. 1
eralised mixed effects model for each languagd€on rst page) and Fig. 3. As noted above, by
We control for each phone's articulatory costs by—;

eq. (7). This is similar to modelling the original
i terms as coming from a log-normal distribution.

+ surprisal  position + (1 j phone) (10)

logly) =1+ x+(1+ xjlanguage) (9)

7 Experiments and Result$’

7.1 Individual Language Analyses

We analyse the impact of both these effects, phone iden-
%0ur code is available athttps:/github.com/ t'tyl?”d word position, in App. A.
rycolab/surprisal-duration-tradeoff ) Statistical signi cance was assessed under a con dence
level of < 0:01 and we used Benjamini and Hochberg
(1995) corrections for multiple tests whenever necessary.



predicting a linear change in logarithmic scale, our
effects become multiplicative instead of additive.
The average multiplicative slope we get across
all the analysed languages in both datasets is
roughly 1:02, meaning that each added bit of

information multiplies duration by 1.02. We

believe this should serve as strong support for
our hypothesis of a trade-off within languages.
Moreover, to the best of our knowledge, this is the
most representative study of the UID hypothesis to

date, as measured by the number and typological . . .
. . Figure 4: Language-speci c trade-off slopes in Epitran
diversity of analysed languages.

from the mixed effects model in eq. (11). Theaxis
represents a multiplicative effect, duration is multiplied
by y per extra bit of phone information.

Following the previous study, we now run a cross-

linguistic analysis by aggregating all the languages L .
within a single model. We add the same controls agross-llngwstlc differences by using the model pa-
before, but further nest the phone random efrectgameters. It therefore cannot serve as con rmation
per language (meaning we create one random effe(?tf a trade-off across the world's languages by itself,

per phone—language pair). We also include randorﬂnly as additional evidence for it. In this section,
we do not use language-speci ¢ random effects;

language-speci c intercepts and slopes. Formally, ) -
guage-sp P P ymstead, we average surprisal within a language
log(duration ) =1+ surprisal + position for each phone—position tuple. We then train the

following mixed effects model:

7.2 Aggregated Cross-linguistic Analysis

+ surprisal  position

+(1+ surprisal + surprisal  position duration =1+ surprisal + position
j language) + surprisal  position + (1 j phone) (12)
+(1 j language : phone) (11)  This equation is identical to the one in eq. (10),

. _ _ _ but now we model the language—phone—position
After estimating this generalised mixed eﬁeCtStupIes, instead of a language's individual phois.

r_nod(_al,_ we nd stat|st|ca_||y signi cant cross- Additionally, since we are aggregating results per
linguistic trade-off effects in both datasets. ThetUIOIe for this analysis, the central limit theorem

multiplicative slope is roughlyl:02 in both o5 5 our model's residuals should be roughly
datasets, again meaning each extra bit of 'nform%;aussian We thus use linear mixed effects
t|9n rr_lult|pl_|es the du_ratl'on b_y th'§ valulg (= models, instead of the generalised log-linear ones.
1:023in Unitran and = 1:015in Epitran).® We By analysing this model we nd a signi cantly
further analyse the per-language trade-off slopesyqitive” surprisal-duration additive slope, of
which can be seen in Fig. 4. These language- _ 1:5 milliseconds per bit ( = 1:54in Unitran
speci ¢ slopes are calculated by summing the Xedand = 1:52 in Epitran). This con rms the
effect of the surprisal term with its random eﬁeCtsexpected cross-linguistic trade-off: languages

per language. We see a similar trend in this guréish more surprising phones really have longer

asin Fig. 3, Y\_”th most. of the an_alysed OIOCUIeCtsﬁurations, even after controlling for word positions
having a positive surprisal—duration trade-off. and phone-speci ¢ articulatory costs

7.3 Cross-linguistic Trade-offs 8 Discussion

Our previous experiment in 87.2 makes use of

language-speci ¢ random effects. These eﬁectg he pressure towards a_speci c_ir_1formation rate
allow the model to potentially represewithin- (potentially set at a speci ¢ cognitive channel ca-

language trade-off effects, while correcting for *We note that phone labels may not always align exactly
across languages here, due to possible differences between

BFor the Epitran data, we performed this analysis whileVoxClamantis' G2P label sets. This may introduce noise
also adding language family effects and found similar resultsinto this analysis. It is reassuring, though, that the previous
However, we could not repeat this experiment for Unitran asanalyses with phones as language-speci ¢ effects lead to
the model was too memory intensive. similar conclusions.



pacity) has been posited as an invariant across lanhoices, our overarching conclusion is remarkably

guages. Directly testing such a claim is perhaps imeonsistent across our analyses: the presence of

possible, as data alone cannot prove its universalitg. surprisal—duration trade-off is signi cant in

Moreover, providing meaningful evidence towardslanguage production. In other words, both across

this phenomenon requires a careful and compreheand within languages, phones carrying more

sive cross-linguistic analysis, which we attempt toinformation are longer, while phones carrying less
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A Confound analysis

In this section, we analyse the word position and ar-
ticulatory cost confounds mentioned in §5, as they
could have an impact on a surprisal-duration trade-
off analysis. We first investigate the parameters
from our mixed effects models containing word po-
sitioning effects. The word-initial and word-final
intercepts are significantly positive in all 39 lan-
guages of our mono-lingual Epitran analysis (rep-
resented by eq. (10)) and in both cross-linguistic
experiments (eqs. (11) and (12)). The intercepts for
word-initial positions average at 67 milliseconds,
while the word-final ones average at 32, provid-
ing new evidence for this word boundary lengthen-
ing effect. Since word position is correlated with
surprisal, this boundary lengthening phenomenon
could pose as a source of bias in our results, had
we not controlled for it.

We now explore the potential bias introduced by
phone-specific articulatory costs. As mentioned
in §5, languages with larger phonetic inventory
sizes may be more inclined to use marked phones,
which have longer duration. While this correla-
tion between inventory size and unit cost would be
particularly problematic for larger linguistic units
(e.g. syllables) it can also affect our phone-level
analysis. In fact, we take the Spearman correlation
between a language’s inventory size (in number
of unique phones) and its average phone duration,
finding a positive correlation of p = .28. The aver-
age surprisal-duration Spearman correlation across
languages is p = 0.45. As inventory size and sur-
prisal are strongly correlated across languages, we
find that pure inventory effects may be driving a
large part of the analysed correlation.

To analyse how strongly both confounds would
reflect in the main effect if left unaccounted
for, we rerun our previous analyses, but without
effects for either position, phone, or both. We
do so for Epitran only. The resulting estimated
trade-off effects are given in Tab. 1. We indeed
see that these confounds are typically absorbed
by the fixed surprisal effect in all three settings.
Notably, without confound control we would
find supposedly significant results in all analysed
languages, and a 10 times stronger cross-linguistic
effect, all of which are in fact spurious.

Trade-off Slope ¢

Controls Mono-lingual Cross-linguistic
Phone Position eq.(10) #Sign eq.(11) eq.(12)
4 v 1.02 30 1.027 1.527
v X 1.02 37 1.03% 0.93%
X v 1.03 33 1.02* 15.75
X X 1.04 39 1.04* 15.73Y

Table 1: Comparison of trade-off (in milliseconds per
bit) found when not conditioning on potential con-
founds. # Sign represents the number of significant lan-
guages (o < 0.01) in a mono-lingual analysis.
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Figure 5: Additive slope of the model in eq. (10).
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Figure 6: Additive slope of the model in eq. (11).



C Languages

The languages used in our analyses are listed below, grouped by language family, along with their three
character ISO 639-3 code, and the grapheme-to-phoneme schemes for which phone alignments are
available for that language in the VoxClamantis dataset — Unitran: U, Epitran: E (Salesky et al., 2020).
ISO codes for which there are multiple languages listed may represent dialects or other sub-language
variations and/or multiple available Bible versions for which data is available.



